Кислородная катастрофа на земле. Кислород как фактор эволюции жизни на земле. Отрывок, характеризующий Кислородная катастрофа

Кислородная катастрофа – глобальное изменение состава атмфосферы Земли, которое произошло около 2,4 млрд лет назад, в начале протерозойской эры, и результатом которого стало появление в атмосфере свободного кислорода. 8 тот период характер атмосферы изменился г восстановительного на окислительный. Теория кислородной катастрофы возникла на основе данных
В первичной атмосфере Земли наконец появились молекулы свободного кислорода, а сама она поменяла свой характер с восстановительного на окислительный. За неполных 200 млн лет концентрация кислорода в протерозойской атмосфере выросла в 15 раз.
Предположение о кислородной катастрофе было сделано на основе изучения резкого изменения характера осадконакопления. С биологической точки зрения необходимым уровнем содержания свободного кислорода в атмосфере считается так называемая точка Пастера, то есть около 0,01 от количества кислорода в современной атмосфере. Дело в том, что только при таком атмосферном состоянии живые организмы могут перейти от использования результатов процессов ферментативного брожения к энергетически более эффективному окислению во время дыхания. В протерозойскую эру была не только достигнута точка Пастера, но и значительно преодолен этот своеобразный биологический барьер, что способствовало настоящему эволюционному взрыву – массовому распространению и развитию практически всех типов живых существ на нашей планете.
Благодаря появлению значительных объемов кислорода, в атмосфере и гидросфере Земли была обеспечена устойчивая жизнедеятельность одноклеточных аэробных организмов, которые до этого могли развиваться только в так называемых кислородных карманах. Почему же содержание кислорода в атмосфере протерозойской эры так резко выросло? Не секрет, что главным поставщиком его были фотосинтезирующие растения и бактерии, которые возникли еще в архейскую эру. Хотя вначале объем выработанного ими кислорода в атмосфере и гидросфере планеты практически не рос, он сразу расходовался на окисление горных пород, растворенных соединений и газов атмосферы. Когда все поверхностные породы и газы земной атмосферы оказались окисленными, кислород постепенно начал накапливаться уже в свободном виде. В протерозойский этап истории Земли концентрация кислорода в результате жизнедеятельности бактерий в конце концов превысила 1 % от современного состояния. Содержание углекислого газа постепенно снижалось вследствие затрат углекислоты в процессе фотосинтеза водорослей.
Итак, кислородная катастрофа имела огромные последствия для эволюции живых существ. Атмосфера и гидросфера нашей планеты состоят из легких и летучих веществ, содержание которых на Земле меньше, чем в космическом пространстве. При формировании Земли эти летучие соединения находились в составе твердых веществ, в частности азот – в нитридах, кислород – в окислах металлов.

В процессе активной вулканической деятельности еще в догеологический период истории Земли происходило выплавление базальтов, пара и газов из верхней мантии. Как показали исследования, современные вулканы выделяют преимущественно водяной пар, а также углекислый газ, хлор, метан и другие компоненты. Но при более высоких температурах помимо пара в атмосферу выбрасываются так называемые кислые дымы – соединения серы, борная кислота и соли аммония. По всей видимости, первичная атмосфера Земли сформировалась именно в результате дегазации мантии, а ее основу составили углекислый газ, сероводород, аммиак и метан.
Чтобы оценить изменения, которые произошли с атмосферой и гидросферой Голубой планеты в эпоху протерозоя, необходимо вернуться к составу первичной атмосферы. Изучение содержимого газовых пузырьков в древнейших архейских кварцитах Курумканской свиты Алданского щита позволило ученым уточнить состав первичной атмосферы Земли.
В этих пузырьках совершенно отсутствует свободный кислород, в их составе 60 % занимает углекислый газ и примерно 35 % – сероводород, оксид серы, аммиак и кислые дымы. Очевидно, что эти компоненты поступали на поверхность Земли при дегазации лав и, таким образом, составили ее первичную, чрезвычайно тонкую оболочку. Температура такой атмосферы у поверхности планеты в среднем составляла 15 °С. Водяные пары вулканических газов конденсировались и превращались в жидкую воду. Так формировалась гидросфера Земли. На планете начал образовываться первичный океан, куда переходили, растворяясь в воде, составные части вулканических газов.В догеологический и архейский этапы истории планеты воды в океанах было еще недостаточно, чтобы покрывать срединно-океанские хребты. Только в протерозое уровень океана наконец достиг их вершин.
Кроме атмосферных вулканических газов, способных растворяться в воде, состав первичного океана пополнялся за счет горных пород, подвергавшихся на поверхности суши и на дне моря разрушающему воздействию солнечного излучения и эрозии.
Как появился в атмосфере и гидросфере Земли кислород? Считается, что его молекулы могли образовываться после разложения небольшой доли молекул водяного пара под действием жесткой компоненты солнечного излучения. Тем не менее объемы выделявшегося в процессе этой реакции кислорода должны были быть очень незначительными, так как газ сам поглощал ультрафиолетовое излучение, расщепляющее молекулы воды.
Таким образом, содержание необходимого для жизни химического элемента в атмосфере архея было минимальным – гораздо меньше одной тысячной процента современного уровня. При этом практически все формировавшиеся его молекулы быстро затрачивались на окисление атмосферных газов. Тонкая первичная атмосфера в отсутствие кислорода не могла защитить планету от жесткого излучения Солнца, что определяло биологическое разнообразие Земли.
К началу протерозоя количество воды на Земле продолжало увеличиваться – образовался единый Мировой океан. Но при этом отмечалось резкое уменьшение концентрации диоксида углерода в раннепротерозойской атмосфере. Содержание же кислорода в атмосфере и гидросфере планеты продолжало оставаться крайне низким – всего 1 % от сегодняшнего уровня.
Предполагается, что в этот период в мантии Земли еще сохранялось 4-6 % металлического железа, игравшего роль мощного поглотителя кислорода. Этот трехвалентный химический элемент, нерастворимый в воде, под действием кислорода выпадал в осадок и накапливался вместе с кремнеземом в огромных залежах железных руд, известных нам сегодня. Таким образом, в раннем протерозое атмосфера нашей планеты в основном состояла только из азота с небольшими добавками водяного пара, аргона, диоксида углерода и кислорода. Важнейшим событием в протерозое стала кислородная катастрофа. Под этим названием в историю Земли вошло революционное событие, произошедшее 2,4 млрд лет назад. Атмосфера нашей планеты в это время масштабно наполняется кислородом.

(кислородная революция) — коренное изменение окружающей среды, случившейся примерно 2400000000 лет назад во время сидерийського периода в начале протерозойской эры.

Примерно 2700000000 лет назад атмосфера Земли состояла в основном из углекислого газа (около 90%). С появлением живых организмов, которые начали применять фотосинтез, поглощая углекислый газ и производя кислород, состав атмосферы претерпел кардинальные изменения. В современную геологическую эру содержание углекислого газа в атмосфере составляет около 0,03%. Соответственно, значительно снизился атмосферное давление. Это привело к экологической катастрофе, так как кислород ядовит для анаэробных организмов, доминировавших в то время. Изменение состава атмосферы привела к массовому вымиранию видов. Анаэробные бактерии уцелели только глубоко под водой и на земле, где доступ кислорода ограничен. Однако эта экологическая катастрофа создала предпосылки для развития энергетически выгодного кислородного метаболизма живых организмов и расцвета жизни в последующие эпохи.

Геологическая история

Заметное количество кислорода в атмосфере появилась около 2200000000 лет назад.

С биологической точки зрения критическим уровнем содержания кислорода является 0,2% (т.н. точка Пастера, около одной сотой доли современного содержания кислорода), когда процессы окисления становятся для живых организмов энергетически более выгодным, чем анаэробное дыхание. Считается, что точки Пастера было достигнуто около 600 млн лет назад, что привело к массовому распространению животных в начале фанерозоя.

Около 400 млн лет назад, когда концентрация кислорода в атмосфере составляла около 10% современной, образовался озоновый экран, после чего содержание кислорода в атмосфере очень быстро достиг современного уровня.

Задержка

Между возникновением фотосинтеза и кислородной катастрофой была задержка в 300 млн лет.

Одно из предложенных объяснений задержки — тектонические изменения, которые привели к появлению морских шельфов, на которых органический углерод мог откладываться в виде осадка. Кроме того, произведенный кислород связывался с ионами железа, которыми в то время был богат океан, образуя залежи железной руды. Однако эти механизмы не могут полностью объяснить природу задержки.

В 2006 году появилась новая гипотеза. Способны к фотосинтезу организмы также производят метан. Метан легко окисляется под действием ультрафиолетового облучения, связывая таким образом освобожденный кислород. Математическое моделирование атмосферы показало, что ей присуща бистабильность — могут существовать два разных равновесные состояния, в одном из которых содержание кислорода составляет 0,2%, а в другом — более 21%. К бистабильности приводит то обстоятельство, что в атмосфере с высоким содержанием кислорода возникает озоновый слой, который обладает способностью экранировать ультрафиолетовое излучение.

В ранних океанах и даже в атмосфере молодой Земли не было свободного кислорода, хотя за счет фотосинтеза цианобактерии и продуцировали его как побочный продукт метаболизма. Свободный кислород не вступает во взаимодействие с другими распространенными на планете элементами, такими как азот или углерод, а вот человеку он жизненно необходим. Ученые подсчитали, что небольшие «карманы» свободного кислорода начали появляться на Земле примерно три миллиарда лет назад, а около 2,4 миллиардов лет назад уровень кислорода в атмосфере резко увеличился: за 200 миллионов лет кислорода стало больше в 10 000 раз! Это событие исследователи окрестили Кислородной катастрофой (Great Oxidation Event , букв. Великое окисление) и именно оно полностью изменило характер поверхностных химических реакций Земли.

Кислородная революция: преобразившаяся Земля

Геолог из Университета Британской Колумбии Мэттис Смит (Matthijs Smit) и его коллега, профессор Клаус Мезгер (Klaus Mezger) из Университета Берна, посвятили новую работу исследованию этого феномена. Зная, что Кислородная катастрофа также трансформировала и породы, из которых состоят континенты, ученые начали изучать результаты геохимического анализа вулканической активности по всему миру, что в конечном итоге позволило им отобрать 48 000 образцов, возраст которых исчисляется миллиардами лет.

В своем пресс-релизе Смит отмечает, что с того момента, как в океане начал появляться свободный кислород, в составе континентов произошли ошеломляющие изменения. Горные породы на территории современной Исландии и Фарерских островов по составу примерно похожи на те, что были на молодой Земле до Кислородной катастрофы: они богаты магнием, а вот содержание кремнезема в них довольно низкое. Породы прошлого содержали минеральный оливин , который инициировал кислородные химические реакции при контакте с водой. По мере того, как континентальная кора развивалась и увеличивалась в размерах, оливин практически исчез, а с ним прекратились и реакции. Кислород начал накапливаться в океанах, а когда вода насытилась им, то газ стал уходить и в атмосферу.

Смит уверен, что именно это и стало отправной точкой для развития жизненных форм такими, какими мы их знаем сегодня. После насыщения кислородом Земля стала не только более пригодной для жизни в целом, но и куда лучше подходящей для развития сложных организмов. Причина изменений континентальной структуры пока остается неизвестной, но ученые отмечают, что тектоника плит началась примерно в этот период, а потому между этими событиями может быть прямая связь.

Значение открытия

Речь не идет об эволюции и абиогенезе — вопросы изначального зарождения жизни на Земле все еще остаются открытыми. Однако кислород — важнейший элемент, обеспечивший существование белковой жизни. Зная, как он изменил Землю, ученые смогут применить тот же принцип в исследовании экзопланет и в будущем выбрать для человечества идеальную планету для заселения: к примеру, уже сейчас астрономы подозревают, что две планеты в системе TRAPPIST-1 покрыты . Зная, как кислород влияет на формирование континентов, можно будет значительно сузить круг поисков и целенаправленно искать максимально подходящий нам новый мир.

С появлением кислорода начал формироваться озоновый экран нашей планеты, что привело к отсечению УФ-лучей от солнечного спектра. В этих условиях, естественно, отбор пошел по пути все большего использования длинноволновой радиации в процессах углеродного метаболизма.

Переходными между аэробами и анаэробами являются хемоавтотрофы и фоторедукторы, особенности которых достаточно хорошо изучены (Э. Брода, 1978; М. В. Гусев, Г. Б. Гохлернер, 1981). Анаэробные фототрофы с сульфатным типом дыхания появились на 1 млрд. лет раньше аэробов. Аэробные механизмы возникают в виде дополнения к процессам брожения для увеличения выхода АТФ (аэробное окисление у молочнокислых бактерий) или нитратного дыхания, где нитраты (NO 3 —) служили акцепторами водорода (Э. Брода, 1978). В отличие от анаэробных механизмов окислительные надстройки по существу не являются универсальными, у различных групп современных организмов они значительно различаются между собой. Так, в частности, у прокариот окислительное генерирование энергии идет на наружной клеточной мембране и в ее впячиваниях, а у эукариот - на внутренней мембране митохондрий (Т. В. Чиркова, 1988).

Разница между аэробным и анаэробным дыханием состоит главным образом в акцепторах и продукции АТФ. Одной из важных надстроек при возникновении аэробногр дыхания является цикл Кребса (ЦТК), протекающий в митохондриях. Возникновение его связывают с циклом Арнона, характерным для зеленых серобактерий. Некоторые реакции ЦТК функционируют уже у клостридий и метанобразующих бактерий (при синтезе глутамата из α-кетоглутаровой кислоты). Существует мнение о начальном самостоятельном возникновении ди- и трикарбоновой части ЦТК, так как среди цианей и зеленых бактерий встречаются формы, у которых эти звенья еще не соединены, на уровне α-кетоглутаровой кислоты.

Электрон-транспортная дыхательная цепь, где происходит окисление НАД ∙ Н в аэробных условиях, складывается в результате «инверсии» фотосинтетической ЭТЦ (Г. Б. Гохлернер, 1977). Электрон в ЭТЦ дыхания передается постепенно переносчиками на акцепторы, причем от имеющих низкий окислительный потенциал к акцепторам с все большим окислительным потенциалом и, наконец, к кислороду. На один атом кислорода при окислительном фосфорилировании синтезируется три молекулы АТФ.

В связи с этим появление кислорода в атмосфере благодаря деятельности фототрофов, несомненно, должно было привести к изменению прежде всего донорно-акцепторных отношений в живой природе. Возникла задача «отработки» системы акцептирования агрессивного химического агента - кислорода. Первыми испытанию на надежность подвергались сами организмы, выделяющие кислород; их внутриклеточные компартменты и такие высокочувствительные к O 2 ключевые ферменты, как нитрогеназа, гидрогеназа и РБФК. Ввиду выделения такими организмами кислорода и накопления его внутри себя они в конце концов должны были вымереть из-за прекращения, размножения и угнетения общего метаболизма.

Вероятность указанного процесса возрастала и по другой причине, в частности из-за возможности перевода хлорофилла a в сингелетное состояние, что грозило фотоокислительному повреждению его молекулы. Поэтому необходимы были системы внутриклеточной инактивации O 2 . Наиболее простой выход таился в рамках исходной клетки. Именно тогда могли проявиться присущие молекуле каротиноидов защитные свойства, благодаря их способности вступать во взаимодействие с триплетным состоянием хлорофилла и самим O 2 следующим образом:

Каротиноиды + O 2 → каротиноиды (триплетное состояние) + O 2 → (основное состояние) → каротиноиды (триплетное состояние) → каротиноиды (основное состояние) + теплота.

Со способностью к подобным превращениям каротиноидов, в том числе и у существ, не выделяющих кислород, отчасти связано широкое распространение их в живой природе. Это обстоятельство делало возможным обитание таких анаэробных существ в соседстве с кислородовыделяющими формами.

Каротиноиды выполняли функцию фотопротекторов, защищая клетки и ткани от вредного действия видимой радиации и O 2 . Они служили в качестве светособирающих пигментов в восстановленной атмосфере в раннем периоде Земли. По мере насыщения атмосферы O 2 эта функция каротиноидов постепенно утрачивалась, а фотопротекторная функция усиливалась (R. Maroti et al., 1984). В этом случае они играют роль «энергетического клапана» при изменении интенсивности света.

В то же время, как подчеркивает Р. Клейтон (1984), первичное устранение токсичности O 2 могло быть достигнуто его использованием для окисления Fe 2+ , находящегося в большом количестве в водах и, следовательно, внутри самой клетки. При исчерпании возможностей каротиноидов и запасов Fe 2+ (что наблюдалось по мере усиления фотосинтеза самой клетки) O 2 начал выходить из клетки и поступать в окружающую среду примерно около 2 млрд. лет назад. При этом возросла опасность для окружающей жизни. Кислород мог выйти в атмосферу из клетки и после гибели его продуцента. Значимость такого выхода нельзя отрицать даже если при этом освобождалось 10 -6 мг O 2 . Агрессивность O 2 могла быть значительной в случае отмирания миллиардов существ, выделяющих кислород.

По указанным и другим причинам O 2 становился все более губительным для окружающих существ, не выделяющих его. Опасность первичного O 2 была связана с возможностью при его участии образования супероксидных радикалов O 2 — , гидроксидного радикала ОН, пероксида водорода H 2 O 2 , озона O 3 , сингелетно-возбужденного O 2 — и атомарного O состояний кислорода. В связи с этим защита живых организмов могла быть обеспечена путем или «укрытия» их в нишах, где нет O 2 , или выработки приспособлений для метаболической утилизации O 2 . Так, по имеющимся Данным, уже при содержании в атмосфере 0,2% O 2 (что соответствует 0,01% от современного уровня его содержания) возникла необходимость переключения процессов брожения на аэробное дыхание.

Первичная толерантность к O 2 , как отмечено выше, была основана на использовании пассивных средств, защиты, т. е. возможностей самой среды (внутренней ивнешней). С накоплением O 2 в среде часть его под действием УФ-лучей стала превращаться в O 3 . Так стад формироваться озоновый экран планеты. На значение озонового экрана в развитии жизни обращал внимание Л. С. Берг (1944), внося коррективы в гипотезу А. И. Опарина. В частности, Л. С. Берг писал, что до появления фотосинтезирующих растений, когда в стратосфере не было озонового экрана, жизнь могла возникнуть и тем более сохраниться только в местах, защищенных от губительного действия космических лучей. В качестве таких мест автор считал скопление воды на поверхности суши под обломками минеральных пород коры выветривания. Точно так же Н. Г. Холодный считал мелкие континентальные водоемы колыбелью земной жизни. По мнению Л. Г. Стеббинса (1982), первые фотосинтезирующие бактерии появляются в руслах рек или пресных мелководий. По общему признанию, озоновый экран стал играть эффективную роль в защите многих Организмов от губительных компонентов солнечного света. Возможно, именно это обстоятельство «вывело» жизнь из морской глубины на свет, т. е. на хорошо освещенную поверхность воды. Такой подъем был осуществлен и бесцветными формами жизни, что в итоге способствовало соприкосновению разнообразных существ с O 2 . И тем самым повышался успех отбора среди них достижением коренного решения проблемы защиты организмов от O 2 , метаболизацией его в энергетических целях для синтеза АТФ.

Поиск, судя по ныне живущим прокариотам, шел в разных направлениях, в частности имел место отбор организмов по способности синтеза специальных ферментов (супероксиддисмутаза, каталаза, пероксидаза) и клеточных метаболитов (каротиноидов), формирования сообществ (из разных по устойчивости к O 2 организмов) и структур (митохондрий и хлоропластов), а также по использованию O 2 при азотфиксации, люминесценции и т. п. По этой причине у многих современных анаэробных прокариот найден тот или иной путь защиты от O 2 , позволяющий им жить в аэробной среде. Сказанное можно демонстрировать и наблюдениями о поглощении O 2 некоторой частью современных анаэробных прокариот при столкновении с ним (М. В. Гусев, Л. А. Минеева, 198S).

Использование O 2 прокариотами в последующем пошло по пути ферментативного и неферментативного (прямое внедрение в молекулу) взаимодействия. Аэротолерантность первично возникает у форм с субстратным фосфорилированием. Так, молочнокислые бактерии способны, не используя O 2 в, метаболизме, восстановить его до H 2 O 2 благодаря наличию флавиновых ферментов. У них пероксид накапливается в клетке из-за отсутствия каталазы. У анаэробных пропионовокислых бактерий аэротолерантность обеспечивается наличием супероксидцисмутазы, каталазы и пероксидазы для обезвреживания супероксидного аниона и H 2 O 2 . Эволюция у пропионовых бактерий пошла еще дальше по пути приспособления к аэробным условиям, у них обнаружены цитохромы, реакции ПФП и ЦТК. В связи с этим у пропионовых бактерий расширяются возможности использования разных сред и пути вовлечения CO 2 в метаболизм. С формированием ПФП становится Возможной полная деградация углеводов и начинается эра переноса отщепленного при этом водорода на кислород.

Эволюция по пути метаболического использования O 2 привела в вовлечению его в реакции как акцептора электронов и источника энергии для клетки. В этом как раз большую роль призваны были сыграть складывающиеся ферментативный комплекс (для запасания АТФ) и ЭТЦ, участвующая в переносе протонов через мембрану и электронов на O 2 . Согласно представлениям П. Митчела, указанные два процесса могли сложиться неодновременно, причем у разных существ. Поэтому возникает проблема их объединения в одном существе для эффективного метаболического использования O 2 , что могло быть достигнуто или симбиозом разных существ, или мутационным преобразованием других звеньев метаболизма (ЭТЦ фотосинтеза в дыхательную цепь). Мы не знаем, как обстояло здесь дело, хотя многие полагают наиболее вероятным второй путь.

Как бы то ни было, возникает способность полного отщепления Н 2 от субстрата, переноса его на O 2 и преобразования энергий такого переноса в химическую энергию АТФ. Это стало возможным после возникновения ЦТК в результате «надстройки» некоторых реакций на анаэробные энергетические механизмы клетки. Неполный, или «разорванный» ЦТК обнаружен у ряда анаэробных фототрофных бактерий, цианей и др. О роли и степени выраженности ЦТК у разных прокариот достаточно сказано (М. В. Гусев, Л. А Минеева, 1985). Для нас же важно, что указанный цикл стал функционировать первоначально наиболее полно у фототрофов - цианей и многих пурпурных бактерий. Именно выделение O 2 последними «вдохнуло» жизнь в «выжидающие» реакции ЦТК, т. е. подключило последние к системе энергодобычи. Это произошло на критических этапах эволюции жизни на Земле, когда к системе энергообеспечения стали предъявляться повышенные требования: выжить или вымереть существам.

Стабилизация ЦТК в ходе эволюции связана с возможностью получения наибольшего количества АТФ и обеспечения значительной эффективности процесса из-за присоединения промежуточного метаболита к другой молекуле с низкой молекулярной массой (Н. A Krebs, 1981).

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

ГОСУДАРСТВЕННОЕ ВЫСШЕЕ УЧЕБНОЕ ЗАВЕДЕНИЕ

ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Факультет экологии и химической технологии

Кафедра химической технологии топлива

по дисциплине

«Основы технического творчества»

на тему: «Этика в техническом творчестве»

Выполнил:

студент группы ТХВ-13 Островский С. В.

Проверил:

Кипря А.В

Донецк 2015 г.

а) Примеры Супервулканов 8

b) Последствия Супервулканов 9

Список использованных источников 19

Введение

В общественном сознании прочно укоренилось представление об экологии как о степени загрязнения окружающей среды. На самом деле это не так. Экология - это наука и она, как и все остальные науки, не может быть плохой или хорошей. Но сплошь и рядом слышится: "здесь плохая экология" или "там экология нарушена". Экология же, как наука изучает взаимоотношения в живой природе, и вот как раз они-то и нарушаются человеком все чаще и чаще. Это и исчезновение видов, каждый из которых выполнял в природе определенную роль, это и изменения численности других видов вследствие охоты, загрязнений, уничтожений мест обитания и т.д.

Когда в 1960-е гг. человечество начало осознавать серьёзность встающих перед ним экологических проблем, возник вопрос: сколько времени у нас осталось? Сколько лет пройдёт, прежде чем мы столкнёмся с трагическими последствиями нашего пренебрежительного отношения к окружающей среде? Ответом было: 30-35 лет. Сейчас, когда мы приближаемся к концу назначенного тридцатилетнего срока, этот прогноз навязчиво преследует человечество. Прогноз был недалёк от истины, так как налицо потепление климата, дыры в защитном озоновом слое над полюсами, повсеместное присутствие токсичных химических веществ, загрязнение пищевых продуктов остатками пестицидов и вымиранием огромного числа видов по мере отступления лесов перед растущим народонаселением планеты.

Всё это весьма печально. Отрадно же то, что перечисленные проблемы изучены и уже разработаны (по крайней мере теоретически или на уровне опытных установок) технологии, позволяющие их разрешить, а значит, обеспечить устойчивое развитие общества.

  1. Природные катастрофы

1.1. Кислородная катастрофа

Кислородная катастрофа (кислородная революция) - глобальное изменение состава атмосферы Земли, произошедшее в самом начале протерозоя, около 2,4 млрд лет назад. Результатом Кислородной катастрофы стало появление в составе атмосферы свободного кислорода и изменение общего характера атмосферы с восстановительного на окислительный. Предположение о кислородной катастрофе было сделано на основе изучения резкого изменения характера осадконакопления.

Оказалось, что на протяжении загадочного периода «молчащей эволюции» содержание кислорода в атмосфере было на самом деле весьма невелико – всего 0,1% от нынешней его концентрации. То есть уровень кислорода сильно просел почти сразу же после первого резкого его повышения, случившегося 2,3 млрд лет назад. И следующий значительный скачок кислорода случился уже как раз 800 млн лет назад. То есть у жизни на Земле были все причины оставаться в относительной спячке.

Конечно, это исследование только констатирует факт того, что уровень кислорода упал после первого скачка вверх. Почему именно он упал, куда делся кислород из атмосферы на целый миллиард лет, мы пока можем только гадать. С другой стороны, нужно помнить, что даже после второго кислородного скачка эволюционный двигатель не сразу заработал в полную силу, и потребовалось ещё 260 млн лет, чтобы произошёл кембрийский взрыв, когда за короткое время образовалось огромное множество новых форм жизни. Возможно, в период перед кембрийским взрывом как раз и происходили окончательные молекулярно-генетические изменения, позволяющие организмам использовать все преимущества кислородной атмосферы. Наука и жизнь, Кислородная катастрофа случилась на Земле не сразу.