Изменение внутренней энергии вещества в фазовых переходах. Фазовые переходы. Классификация фазовых переходов. Фазовые превращения в твердом состоянии

Фазовый переход (фазовое превращение) в термодинамике - переход вещества из одной термодинамической фазы в другую при изменении внешних условий. С точки зрения движения системы по фазовой диаграмме при изменении её интенсивных параметров (температуры , давления и т. п.), фазовый переход происходит, когда система пересекает линию, разделяющую две фазы. Поскольку разные термодинамические фазы описываются различными уравнениями состояния, всегда можно найти величину, которая скачкообразно меняется при фазовом переходе.

Поскольку разделение на термодинамические фазы - более мелкая классификация состояний, чем разделение по агрегатным состояниям вещества, то далеко не каждый фазовый переход сопровождается сменой агрегатного состояния. Однако любая смена агрегатного состояния есть фазовый переход.

Наиболее часто рассматриваются фазовые переходы при изменении температуры, но при постоянном давлении (как правило равном 1 атмосфере). Именно поэтому часто употребляют термины «точка» (а не линия) фазового перехода, температура плавления и т. д. Разумеется, фазовый переход может происходить и при изменении давления, и при постоянных температуре и давлении, но при изменении концентрации компонентов (например, появление кристалликов соли в растворе, который достиг насыщения).

Классификация фазовых переходов

При фазовом переходе первого рода скачкообразно изменяются самые главные, первичные экстенсивные параметры: удельный объём, количество запасённой внутренней энергии, концентрация компонентов и т. п. Подчеркнём: имеется в виду скачкообразное изменение этих величин при изменении температуры, давления и т. п., а не скачкообразное изменение во времени (насчёт последнего см. ниже раздел Динамика фазовых переходов).

Наиболее распространённые примеры фазовых переходов первого рода:

  • плавление и затвердевание
  • кипение и конденсация
  • сублимация и десублимация

При фазовом переходе второго рода плотность и внутренняя энергия не меняются, так что невооружённым глазом такой фазовый переход может быть незаметен. Скачок же испытывают их производные по температуре и давлению: теплоёмкость , коэффициент теплового расширения, различные восприимчивости и т. д.

Фазовые переходы второго рода происходят в тех случаях, когда меняется симметрия строения вещества (симметрия может полностью исчезнуть или понизиться). Описание фазового перехода второго рода как следствие изменения симметрии даётся теорией Ландау. В настоящее время принято говорить не об изменении симметрии, но о появлении в точке перехода параметра порядка, равного нулю в менее упорядоченной фазе и изменяющегося от нуля (в точке перехода) до ненулевых значений в более упорядоченной фазе.

Наиболее распространённые примеры фазовых переходов второго рода: прохождение системы через критическую точку

  • переход парамагнетик-ферромагнетик или парамагнетик-антиферромагнетик (параметр порядка - намагниченность)
  • переход металлов и сплавов в состояние сверхпроводимости (параметр порядка - плотность сверхпроводящего конденсата)
  • переход жидкого гелия в сверхтекучее состояние (п.п. - плотность сверхтекучей компоненты)
  • переход аморфных материалов в стеклообразное состояние

Современная физика исследует также системы, обладающие фазовыми переходами третьего или более высокого рода.

В последнее время широкое распространение получило понятие квантовый фазовый переход, т.е. фазовый переход, управляемый не классическими тепловыми флуктуациями, а квантовыми, которые существуют даже при абсолютном нуле температур, где классический фазовый переход не может реализоваться вследствие теоремы Нернста.

Динамика фазовых переходов

Как сказано выше, под скачкообразным изменением свойств вещества имеется в виду скачок при изменении температуры и давления. В реальности же, воздействуя на систему, мы изменяем не эти величины, а её объем и её полную внутреннюю энергию . Это изменение всегда происходит с какой-то конечной скоростью, а значит, что для того, чтобы «покрыть» весь разрыв в плотности или удельной внутренней энергии, нам требуется некоторое конечное время. В течение этого времени фазовый переход происходит не сразу во всём объёме вещества, а постепенно. При этом в случае фазового перехода первого рода выделяется (или забирается) определённое количество энергии, которая называется теплотой фазового перехода. Для того, чтобы фазовый переход не останавливался, требуется непрерывно отводить (или подводить) это тепло, либо компенсировать его совершением работы над системой.

В результате, в течение этого времени точка на фазовой диаграмме, описывающая систему, «замирает» (т.е. давление и температура остаются постоянными) до полного завершения процесса.

Литература

  • Базаров И. П. Термодинамика. - М.: Высшая школа, 1991, 376 с.
  • Базаров И. П. Заблуждения и ошибки в термодинамике. Изд. 2-ое испр. - М.: Едиториал УРСС, 2003. 120 с.
  • Квасников И. А. Термодинамика и статистическая физика. Т.1: Теория равновесных систем: Термодинамика. - Том.1. Изд. 2, испр. и доп. - М.: УРСС, 2002. 240 с.
  • Стенли. Г. Фазовые переходы и критические явления. - М.: Мир, 1973.
  • Паташинский А. З., Покровский В. Л. Флуктуационная теория фазовых переходов. - М.: Наука, 1981.
  • Гуфан Ю. М.. Термодинамическая теория фазовых переходов. - Ростов н/Д: Издательство Ростовского университета, 1982. - 172 с.

Фазой называется термодинамически равновесное состояние вещества, отличающееся по физическим свойствам от других возможных равновесных состояний того же вещества. Если, например, в закрытом сосуде находится вода, то эта система является двухфазной: жидкая фаза - вода; газообразная фаза - смесь воздуха с водяными парами. Если в воду бросить кусочки льда, то эта система станет трехфазной, в которой лед является твердой фазой. Часто понятие «фаза» употребляется в смысле агрегатного состояния, однако надо учитывать, что оно шире, чем понятие «агрегатное состояние». В пределах одного агрегатного состояния вещество может находиться в нескольких фазах, отличающихся по своим свойствам, составу и строению (лед, например, встречается в пяти различных модификациях - фазах). Переход вещества из одной фазы в другую - фазовый переход - всегда связан с качественными изменениями свойств вещества. Примером фазового перехода могут служить изменения агрегатного состояния вещества или переходы, связанные с изменениями в составе, строении и свойствах вещества (например, переход кристаллического вещества из одной модификации в другую).

Различают фазовые переходы двух родов. Фазовый переход I рода (например, плавление, кристаллизация и т. д.) сопровождается поглощением или выделением теплоты, называемой теплотой фазового перехода. Фазовые переходы I рода характеризуются постоянством температуры, изменениями энтропии и объема. Объяснение этому можно дать следующим образом. Например, при плавлении телу нужно сообщить некоторое количество теплоты, чтобы вызвать разрушение кристаллической решетки. Подводимая при плавлении теплота идет не на нагрев тела, а на разрыв межатомных связей, поэтому плавление протекает при постоянной температуре. В подобных переходах - из более упорядоченного кристаллического состояния в менее упорядоченное жидкое состояние - степень беспорядка увеличивается, т. е., согласно второму началу термодинамики, этот процесс связан с возрастанием энтропии системы. Если переход происходит в обратном направлении (кристаллизация), то система теплоту выделяет.

Фазовые переходы, не связанные с поглощением или выделением теплоты и изменением объема, называются фазовыми переходами П рода. Эти переходы характеризуются постоянством объема и энтропии, но скачкообразным изменением теплоемкости. Общая трактовка фазовых переходов II рода предложена академиком Л. Д. Ландау (1908-1968). Согласно этой трактовке, фазовые переходы II рода связаны с изменением симметрии: выше точки перехода система, как правило, обладает более высокое симметрией, чем ниже точки перехода. Примерами фазовых переходов II рода являются: переход ферромагнитных веществ (железа, никеля) при определенных давлении и температуре в парамагнитное состояние; переход металлов и некоторых сплавов при температуре, близкой к 0 К, в сверхпроводящее состояние, характеризуемое скачкообразным уменьшением электрического сопротивления до нуля; превращение обыкновенного жидкого гелия (гелия I) при Т=2,9К в другую жидкую модификацию (гелий II), обладающую свойствами сверхтекучести.

переходы в-ва из одной фазы в другую при изменении параметров состояния, характеризующих термодинамич. равновесие. Значение т-ры, давления или к.-л. др. физ. величины, при к-ром происходят Ф. п. в одно-компонентной системе, наз. точкой перехода. При Ф. п. I рода св-ва, выражаемые первыми производными энергии Гиббса G по давлению р, т-ре Т и др. параметрам, меняются скачком при непрерывном изменении этих параметров. При этом выделяется или поглощается теплота перехода. В однокомпонентной системе т-ра перехода 1 связана с давлением р 1 Клапейрона - Клаузиуса уравнением dp 1 /dT 1 = = QIT 1 DV, где Q - теплота перехода, DV - скачок объема. Для Ф. п. I рода характерны гистерезисные явления (напр., перегрев или переохлаждение одной из фаз), необходимые для образования зародышей другой фазы и протекания Ф. п. с конечной скоростью. В отсутствие устойчивых зародышей перегретая (переохлажденная) фаза находится в состоянии метастабильного равновесия (см. Зарождение новой фазы). Одна и та же фаза может существовать (хотя и метастабильно) по обе стороны от точки перехода на диаграмме состояния (однако кристаллич. фазы нельзя перегреть выше т-ры плавления или сублимации). В точке F. p. I рода энергия Гиббса G как ф-ция параметров состояния непрерывна (см. рис. в ст. Диаграмма состояния), а обе фазы могут сосуществовать сколь угодно долго, т. е. имеет место т. наз. фазовое расслоение (напр., сосуществование жидкости и ее пара или твердого тела и расплава при заданном полном объеме системы).

Ф. п. I рода - широко распространенные в природе явления. К ним относятся испарение и конденсация из газовой в жидкую фазу, плавление и затвердевание, сублимация и конденсация (десублимация) из газовой в твердую фазу, большинство полиморфных превращений, нек-рые структурные переходы в твердых телах, напр, образование мартенсита в сплаве железо - углерод. В чистых сверхпроводниках достаточно сильное магн. поле вызывает Ф. п. I рода из сверхпроводящего в нормальное состояние.

При Ф. п. II рода сама величина G и первые производные G по T, р и др. параметрам состояниям меняются непрерывно, а вторые производные (соотв. теплоемкость, коэф. сжимаемости и термич. расширения) при непрерывном изменении параметров меняются скачком либо сингулярны. Теплота не выделяется и не поглощается, явления гистерезиса и метаста-бильные состояния отсутствуют. К F.п. II рода, наблюдаемым при изменении т-ры, относятся, напр., переходы из парамагнитного (неупорядоченного) состояния в магнитоупо-рядоченное (ферро- и ферримагнитное в Кюри точке, антиферромагнитное в Нееля точке) с появлением спонтанной намагниченности (соотв. во всей решетке или в каждой из магн. подрешеток); переход диэлектрик - сегнетоэлектрик с появлением спонтанной поляризации; возникновение упорядоченного состояния в твердых телах (в упорядочивающихся сплавах); переход смектич. жидких кристаллов в нематич. фазу, сопровождающийся аномальным ростом теплоемкости, а также переходы между разл. смектич. фазами; l-переход в 4 He, сопровождающийся возникновением аномально высокой теплопроводности и сверхтекучести (см. Гелий); переход металлов в сверхпроводящее состояние в отсутствие магн. поля.

F. п. могут быть связаны с изменением давления. Многие в-ва при малых давлениях кристаллизуются в неплотноупако-ванные структуры. Напр., структура графита представляет собой ряд далеко отстоящих друг от друга слоев атомов углерода. При достаточно высоких давлениях таким рыхлым структурам соответствуют большие значения энергии Гиббса, а меньшим значениям отвечают равновесные плотноупако-ванные фазы. Поэтому при больших давлениях графит переходит в алмаз. Квантовые жидкости 4 He и 3 He при нормальном давлении остаются жидкими вплоть до самых низких из достигнутых т-р вблизи абс. нуля. Причина этого - в слабом взаимод. атомов и большой амплитуде их "нулевых колебаний" (высокой вероятности квантового туннелирования из одного фиксированного положения в другое). Однако повышение давления приводит к затвердеванию жидкого гелия; напр., 4 He при 2,5 МПа образует гексаген, плотноупакован-ную решетку.

Общая трактовка F. п. II рода предложена Л. Д. Ландау в 1937. Выше точки перехода система, как правило, обладает более высокой симметрией, чем ниже точки перехода, поэтому F. p. П рода трактуется как точка изменения симметрии. Напр., в ферромагнетике выше точки Кюри направления спиновых магн. моментов частиц распределены хаотически, поэтому одновременное вращение всех спинов вокруг одной и той же оси на одинаковый угол не меняет физ. св-в системы. Ниже точки перехода спины имеют преимуществ. ориентацию, и совместный их поворот в указанном выше смысле изменяет направление магн. момента системы. В двухкомпо-нентном сплаве, атомы к-рого А и В расположены в узлах простой кубич. кристаллич. решетки, неупорядоченное состояние характеризуется хаотич. распределением А и В по узлам решетки, так что сдвиг решетки на один период не меняет св-в. Ниже точки перехода атомы сплава располагаются упорядочено: ...ABAB... Сдвиг такой решетки на период приводит к замене всех атомов А на В и наоборот. T. обр., симметрия решетки уменьшается, т. к. подрешетки, образуемые атомами А и В, становятся неэквивалентными.

Симметрия появляется и исчезает скачком; при этом нарушение симметрии можно охарактеризовать физ. величиной, к-рая при Ф. п. II рода изменяется непрерывно и наз. параметром порядка. Для чистых жидкостей таким параметром является плотность, для р-ров - состав, для ферро- и ферримагнетиков - спонтанная намагниченность, для сегне-тоэлектриков - спонтанная электрич. поляризация, для сплавов - доля упорядочившихся атомов для смектич. жидких кристаллов - амплитуда волны плотности и т. п. Во всех перечисленных случаях при т-рах выше точки Ф. п. II рода параметр порядка равен нулю, ниже этой точки начинается его аномальный рост, приводящий к макс. значению при T = O.

Отсутствие теплоты перехода, скачков плотности, и концентраций, характерное для Ф. п. II рода, наблюдается и в критич. точке на кривых Ф. п. I рода (см. Критические явления). Сходство оказывается очень глубоким. Состояние в-ва около критич. точки также можно охарактеризовать величиной, играющей роль параметра порядка. Напр., в случае равновесия жидкость - пар таким параметром служит отклонение плотности в-ва от критич. значения: при движении по критич. изохоре со стороны высоких т-р газ однороден и отклонение плотности от критич. значения равно нулю, а ниже критич. т-ры в-во расслаивается на две фазы, в каждой из к-рых отклонение плотности от критической не равно нулю.

Поскольку вблизи точки Ф. п. II рода фазы мало отличаются друг от друга, возможно существование флуктуации параметра порядка, точно так же, как вблизи критич. точки. С этим связаны критич. явления в точках Ф. п. II рода: аномальный рост магн. восприимчивости ферромагнетиков и диэлектрич. восприимчивости сегнетоэлектриков (аналогом является рост сжимаемости вблизи критич. точки перехода жидкость - пар); резкий рост теплоемкости; аномальное рассеяние световых волн в системе жидкость - пар (т. наз. критич. опалесценция), рентгеновских лучей в твердых телах, нейтронов в ферромагнетиках. Существенно меняются и динамич. процессы, что связано с очень медленным рассасыванием образовавшихся флуктуации. Напр., вблизи критич. точки жидкость - пар сужается линия рэлеевского рассеяния света, вблизи точек Кюри и Нееля соотв. в ферромагнетиках и антиферромагнетиках замедляется спиновая диффузия (происходящее по законам диффузии распространение избыточной намагниченности). Средний размер флуктуации (корреляционный радиус) растет по мере приближения к точке Ф. п. II рода и становится в этой точке аномально большим. Это означает, что любая часть в-ва в точке перехода "чувствует" изменения, произошедшие в остальных частях. Наоборот, вдали от точки перехода II рода флуктуации статистически независимы и случайные изменения состояния в данной части системы не сказываются на св-вах других ее частей.

Деление Ф. п. на два рода несколько условно, т. к. бывают Ф. п. I рода с малыми скачками параметра порядка и малыми теплотами перехода при сильно развитых флуктуациях. Это наиб, характерно для переходов между жидкокристаллич. фазами. Чаще всего это Ф. п. I рода, очень близкие к Ф. п. П рода. Поэтому они, как правило, сопровождаются критич. явлениями. Природа многих Ф. п. в жидких кристаллах определяется взаимод. неск. параметров порядка, связанных с разл. типами симметрии. В нек-рых орг. соед. наблюдаются т. наз. возвратные жидкокристаллич. фазы, появляющиеся при охлаждении ниже т-р существования первичных нема-тич., холестерич. и смектич. фаз.

Особая точка на фазовой диаграмме, в к-рой линия переходов I рода превращается в линию переходов П рода, наз. трикритич. точкой. Трикритич. точки обнаружены на линиях Ф. п. в сверхтекучее состояние в р-рах 4 He - 3 He, на линиях ориентационных переходов в галогенидах аммония, на линии переходов нематич. жидкий кристалл - смектич. жидкий кристалл и в др. системах.

Лит.: Бrаут Р., Фазовые переходы, пер. с англ., M., 1967; Ландау Л. Д., Лифшиц E.M., Статистическая физика, ч. 1, 3 изд., M., 1976; Пикин С. А., Структурные превращения в жидких кристаллах, M., 1981; Паташинский А. 3., Покровский В. Л., Флуктуационная теория фазовых переходов, 2 изд., M., 1982; Анисимов M. А., Критические явления в жидкостях и жидких кристаллах, M., 1987. М. А. Анисимов.

  • - - особый класс магнитных фазовых переходов, при к-рыхменяется ориентация осей лёгкого намагничивания магнетиков при изменениивнеш. параметров...

    Физическая энциклопедия

  • - в ускорителях - совокупность взаимосвязанных колебаний фаз, радиусов орбит и энергий заряж. частиц вблизи их равновесных значений. Для практич...

    Физическая энциклопедия

  • - искажения формы сигнала, обусловленные нарушением фазовых соотношений в его частотном спектре...

    Физическая энциклопедия

  • Химическая энциклопедия

  • - скачкообразные переходы квантовой системы из одного возможного состояния в другое. Квантовые переходы могут быть излучательными и безызлучательными...

    Современная энциклопедия

  • Естествознание. Энциклопедический словарь

  • - - сооружаются на опорах при пересечении водных и др. преград, при прокладке трубопроводов на заболоченных, обводнённых, многолетнемёрзлых грунтах...

    Геологическая энциклопедия

  • - напряжения, возникающие при фазовых превращениях металлов и сплавов в твердом состоянии вследствие различий в удельных объемах образующейся и исходной фаз. Смотри также: - Напряжения - термические...

    Энциклопедический словарь по металлургии

  • - см. Мышцы, электрические свойства...

    Энциклопедический словарь Брокгауза и Евфрона

  • - в квантовой теории, переходы физической микросистемы из одного состояния в другое, связанные с рождением или уничтожением виртуальных частиц, т. е. частиц, существующих лишь в промежуточных, имеющих...
  • - скачкообразные переходы квантовой системы из одного состояния в другое...

    Большая Советская энциклопедия

  • - см. Квантовые переходы...

    Большая Советская энциклопедия

  • - переходы вещества из одной фазы в другую, происходящие при изменении температуры, давления или под действием каких-либо других внешних факторов...

    Современная энциклопедия

  • - скачкообразные переходы квантовой системы из одного возможного состояния в другое...

    Большой энциклопедический словарь

  • - Глаголы, обозначающие какую-либо фазу действия...

    Словарь лингвистических терминов

  • - ФА́ЗА, -ы,...

    Толковый словарь Ожегова

"ФАЗОВЫЕ ПЕРЕХОДЫ" в книгах

Переходы

Из книги Выступление без подготовки. Что и как говорить, если вас застали врасплох автора Седнев Андрей

Переходы Выступая без подготовки, вы сначала говорите о том, что первым пришло вам в голову, затем переходите ко второй идее, после этого – к третьей, а при необходимости – еще дальше. Чтобы речь звучала красиво и непринужденно, используйте специальные

Переходы

Из книги Зрелость. Ответственность быть самим собой автора Раджниш Бхагван Шри

Переходы От Нет К ДА Сознание приносит свободу. Свобода не подразумевает только свободу поступать правильно; если бы это было смыслом свободы, что это была бы за свобода? Если ты свободен только поступать правильно, тогда ты вообще не свободен. Свобода подразумевает обе

Переходы

Из книги Славянская кармическая нумерология. Улучши матрицу своей судьбы автора Маслова Наталья Николаевна

Переходы Вкратце расскажу, как человек может себе организовать переход. Подробнее – в части «Что делать?».Например, восьмерка – это клановость. То есть для ее трансформации в единицы нам нужно оторваться от клана. Нам нужно уехать из дома. Перестать каким-либо образом

Фазовые эксперименты

Из книги Фаза. Взламывая иллюзию реальности автора Радуга Михаил

12. Переходы

Из книги Руководство Proshow Producer Version 4.5 автора Corporation Photodex

12. Переходы Искусство перехода от слайда к слайду

2. Переходы в CSS

Из книги CSS3 для веб-дизайнеров автора Сидерхолм Дэн

2. Переходы в CSS Шел 1997 год; я сидел в плохонькой квартирке в красивом Оллстоне, в Массачусетсе. Обычная ночь просмотра исходников и изучения HTML, которой предшествовал день упаковывания компакт-дисков на местной звукозаписывающей студии, – практически бесплатно

7.2. Переходы

Из книги Самоучитель UML автора Леоненков Александр

7.2. Переходы Переход как элемент языка UML был рассмотрен в главе 6. При построении диаграммы деятельности используются только нетриггерные переходы, т. е. такие, которые срабатывают сразу после завершения деятельности или выполнения соответствующего действия. Этот

Фазовые соотношения в усилителе с общим эмиттером

Из книги OrCAD PSpice. Анализ электрических цепей автора Кеоун Дж.

Фазовые соотношения в усилителе с общим эмиттером Когда в усилителе с ОЭ для стабилизации параметров смещения используется эмиттерный резистор RЕ, он шунтируется конденсатором СЕ с такой емкостью, чтобы на частоте входного сигнала эмиттер можно было бы считать

Переходы

Из книги Искусство беллетристики [Руководство для писателей и читателей.] автора Рэнд Айн

Переходы Трудная проблема, о которой обычно не думают, пока не столкнутся с ней напрямую, как перейти от одного пункта к другому - например, как вывести человека из комнаты на улицу, или как заставить его пересечь комнату, чтобы поднять что-то. На сцене об этих

Переходы

Из книги Лошадь в выездке автора Больдт Харри

Переходы Переходы от одного аллюра к другому и от одного ритма к другому должны быть отчетливо наглядны, но выполняться плавно, а не рывком. При выполнении программы нужно сконцентрировать внимание на том, чтобы делать переходы в точно предписываемом месте. Вплоть до

Фазовые эксперименты

Из книги Сверхвозможности человеческого мозга. Путешествие в подсознание автора Радуга Михаил

Фазовые эксперименты В этом разделе акцент делается не на самом факте достижения фазы, а на дальнейших внутренних действиях в ней: перемещение в пространстве, управление им, нахождение объектов и экспериментах.Практики время от времени пытаются направить свои опыты на

§ 4.18 Фазовые переходы 1-го и 2-го рода

Из книги Баллистическая теория Ритца и картина мироздания автора Семиков Сергей Александрович

§ 4.18 Фазовые переходы 1-го и 2-го рода Я полагаю, что следует ввести в физику понятия симметрии, столь привычные для кристаллографов. П. Кюри, "О симметрии физических явлений", 1894 г. Эти исследования, если бы они были продолжены П. Кюри, могли бы, вероятно, иметь для развития

7. Фазовые переходы I и II рода

автора Буслаева Елена Михайловна

7. Фазовые переходы I и II рода Компоненты в жидком состоянии (компоненты А) растворимы неограниченно, компоненты в твердом состоянии (компоненты В) не образуют химических соединений и нерастворимы.Диаграммы состояния представляют график в координатах сплава –

12. Фазовые превращения в твердом состоянии

Из книги Материаловедение. Шпаргалка автора Буслаева Елена Михайловна

12. Фазовые превращения в твердом состоянии Фаза – это однородная часть системы, которая отделена от другой части системы (фазы) поверхностью раздела, при переходе через которую химический состав или структура изменяются скачком.При кристаллизации чистого металла в

27. Строение и свойства железа; метастабильная и стабильная фазовые диаграммы железо-углерод. Формирование структуры углеродистых сталей. Определение содержания углерода в стали по структуре

Из книги Материаловедение. Шпаргалка автора Буслаева Елена Михайловна

27. Строение и свойства железа; метастабильная и стабильная фазовые диаграммы железо-углерод. Формирование структуры углеродистых сталей. Определение содержания углерода в стали по структуре Сплавы железа с углеродом являются самыми распространенными металлическими

Переход вещества из одного состояния в другое - очень частое явление в природе. Кипение воды в чайнике, замерзание рек зимой, плавление металла, сжижение газов, размагничивание ферритов при нагревании и т.д. относятся именно к таким явлениям, называемым фазовыми переходами. Обнаруживают фазовые переходы по резкому изменению свойств и особенностям (аномалиям) характеристик вещества в момент фазового перехода: по выделению или поглощению скрытой теплоты; скачку объема или скачку теплоемкости и коэффициента теплового расширения; изменению электросопротивления; возникновению магнитных, сегнетоэлектрических, пьезомагнитных свойств, изменению картины рентгеновской дифракции и т.д. Какая из фаз вещества устойчива при тех или иных условиях, определяется одним из термодинамических потенциалов. При заданных в термостате температуре и объеме это свободная энергия Гельмгольца , при заданных температуре и давлении - потенциал Гиббса .

Напомню, что потенциал Гельмгольца F (свободная энергия)- это разность между внутренней энергией вещества Е и его энтропией S, умноженной на абсолютную температуру Т:

И энергия, и энтропия в (1) являются функциями внешних условий (давления p и температуры Т), а фаза, которая реализуется при определенных внешних условиях, обладает наименьшим из всех возможных фаз потенциалом Гиббса. В рамках термодинамики это принцип. При изменении внешних условий может оказаться, что свободная энергия другой фазы стала меньше. Изменение внешних условий всегда происходит непрерывно, и поэтому его можно описать некоторой зависимостью объема системы от температуры . Учитывая это согласование в значениях Т и V, можно сказать, что смена стабильности фаз и переход вещества из одной фазы в другую происходят при определенной температуре на термодинамическом пути , а значения для обеих фаз являются функциями температуры вблизи этой точки Рассмотрим более подробно, как происходит изменение знака . Вблизи зависимость для одной и для другой фазы можно аппроксимировать некоторыми полиномами, которые зависят от :

Разность между свободными энергиями двух фаз принимает вид

Пока разность достаточно мала, можно ограничиться только первым слагаемым и утверждать, что если , то при низких температурах стабильна фаза I, при высоких температурах - фаза II. В самой точке перехода первая производная свободной энергии по температуре естественно испытывает скачок: при , а при . Как мы знаем, есть, по сути, энтропия вещенста. Следовательно, при фазовом переходе энтропия испытывает скачок, определяя скрытую теплоту перехода , так как . Описанные переходы называются переходами первого рода, и они широко известны, изучаются в школе. Все мы знаем о скрытой теплоте парообразования или плавления. Это и есть .

Описывая переход в рамках приведенных термодинамических соображений, мы не рассмотрели только одну, с первого взгляда маловероятную, возможность: может случиться, что при равны не только свободные энергии, но и их производные по температуре, то есть . Из (2) следует, что такая температура, по крайней мере с точки зрения равновесных свойств вещества, не должна быть выделенной. Действительно, при и в первом приближении по отношению к имеем

и, по крайней мере в этой точке, никакого фазового перехода произойти не должно: тот потенциал Гиббса, который был меньше при , будет меньше и при .

В природе, конечно же, не все так однозначно. Иногда есть глубокие причины для того, чтобы при одновременно выполнялись два равенства и . Более того, фаза I становится абсолютно неустойчивой относительно сколь угодно малых флуктуаций внутренних степеней свободы при , а фаза II - при . В этом случае и происходят те переходы, которые по известной классификации Эренфеста получили название переходов второго рода. Название это связано с тем, что при переходах второго рода происходит скачок только второй производной потенциала Гиббса по температуре. Как мы знаем, вторая производная свободной энергии по температуре определяет теплоемкость вещества

Таким образом, при переходах второго рода должен наблюдаться скачок теплоемкости вещества, но не должно быть скрытой теплоты. Поскольку при фаза II абсолютно неустойчива относительно малых флуктуаций и то же относится к фазе I при , то при переходах второго рода не должны наблюдаться ни перегрев, ни переохлаждение, то есть отсутствует температурный гистерезис точки фазового перехода. Есть еще и другие замечательные признаки, характеризующие эти переходы

В чем же глубинные причины термодинамически необходимых условий перехода второго рода? Дело в том, что и при и при существует одно и то же вещество. Взаимодействия между элементами, его составляющими, не изменяются скачком, это и есть физическая природа того, что термодинамические потенциалы для обеих фаз не могут быть совсем независимыми. Как возникает связь между и , и и т.д., можно проследить на простых моделях фазовых переходов, вычисляя термодинамические потенциалы при разных внешних условиях методами статистической механики. Наиболее просто вычислять свободную энергию .

ВИКИПЕДИЯ

Фа́зовый перехо́д (фазовое превращение) в термодинамике - переход вещества из однойтермодинамической фазы в другую при изменении внешних условий. С точки зрения движения системы по фазовой диаграмме при изменении её интенсивных параметров (температуры, давления и т. п.), фазовый переход происходит, когда система пересекает линию, разделяющую две фазы. Поскольку разные термодинамические фазы описываются различными уравнениями состояния, всегда можно найти величину, которая скачкообразно меняется при фазовом переходе.

Поскольку разделение на термодинамические фазы - более мелкая классификация состояний, чем разделение по агрегатным состояниям вещества, то далеко не каждый фазовый переход сопровождается сменой агрегатного состояния. Однако любая смена агрегатного состояния есть фазовый переход.

Наиболее часто рассматриваются фазовые переходы при изменении температуры, но при постоянном давлении (как правило равном 1 атмосфере). Именно поэтому часто употребляют термины «точка» (а не линия) фазового перехода, температура плавления и т. д. Разумеется, фазовый переход может происходить и при изменении давления, и при постоянных температуре и давлении, но и при изменении концентрации компонентов (например, появление кристалликов соли в растворе, который достиг насыщения).

При фазовом переходе первого рода скачкообразно изменяются самые главные, первичные экстенсивные параметры:удельный объём, количество запасённой внутренней энергии, концентрация компонентов и т. п. Подчеркнём: имеется в виду скачкообразное изменение этих величин при изменении температуры, давления и т. п., а не скачкообразное изменение во времени (насчёт последнего см. ниже раздел Динамика фазовых переходов ).

Наиболее распространённые примеры фазовых переходов первого рода :

· плавление и кристаллизация

· испарение и конденсация

· сублимация и десублимация

При фазовом переходе второго рода плотность и внутренняя энергия не меняются, так что невооружённым глазом такой фазовый переход может быть незаметен. Скачок же испытывают их производные по температуре и давлению: теплоёмкость, коэффициент теплового расширения, различные восприимчивости и т. д.

Фазовые переходы второго рода происходят в тех случаях, когда меняется симметрия строения вещества (симметрия может полностью исчезнуть или понизиться). Описание фазового перехода второго рода как следствие изменения симметрии даётся теорией Ландау. В настоящее время принято говорить не об изменении симметрии, но о появлении в точке перехода параметра порядка , равного нулю в менее упорядоченной фазе и изменяющегося от нуля (в точке перехода) до ненулевых значений в более упорядоченной фазе.

Наиболее распространённые примеры фазовых переходов второго рода:

· прохождение системы через критическую точку

· переход парамагнетик-ферромагнетик или парамагнетик-антиферромагнетик (параметр порядка - намагниченность)

· переход металлов и сплавов в состояние сверхпроводимости (параметр порядка - плотность сверхпроводящего конденсата)

· переход жидкого гелия в сверхтекучее состояние (п.п. - плотность сверхтекучей компоненты)

· переход аморфных материалов в стеклообразное состояние

Современная физика исследует также системы, обладающие фазовыми переходами третьего или более высокого рода.

В последнее время широкое распространение получило понятие квантовый фазовый переход, т.е. фазовый переход, управляемый не классическими тепловыми флуктуациями, а квантовыми, которые существуют даже при абсолютном нуле температур, где классический фазовый переход не может реализоваться вследствие теоремы Нернста.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-12

Р, т-ре Т и др. параметрам, меняются скачком при непрерывном изменении этих параметров. При этом выделяется или поглощается теплота перехода. В однокомпонентной системе т-ра перехода T 1 связана с р 1 Клапейрона - Клаузиуса уравнением dp 1 /dT 1 = = QIT 1 DV, где Q - теплота перехода, DV - скачок объема. Для фазовых переходов I рода характерны гистерезисные явления (напр., перегрев или переохлаждение одной из фаз), необходимые для образования зародышей другой фазы и протекания фазовых переходов с конечной скоростью. В отсутствие устойчивых зародышей перегретая (переохлажденная) фаза находится в состоянии метастабильного (см. ). Одна и та же фаза может существовать (хотя и метастабильно) по обе стороны от точки перехода на (однако кристаллич. фазы нельзя перегреть выше т-ры или ). В точке фазовых переходов I рода G как ф-ция непрерывна (см. рис. в ст. ), а обе фазы могут сосуществовать сколь угодно долго, т. е. имеет место т. наз. фазовое расслоение (напр., сосуществование и ее или и при заданном полном объеме системы).

Ф азовые переходы I рода - широко распространенные в природе явления. К ним относятся и из газовой в жидкую фазу, и затвердевание, и (десублимация) из газовой в твердую фазу, большинство полиморфных превращений, нек-рые структурные переходы в , напр, образование мартенсита в - . В чистых достаточно сильное магн. поле вызывает фазовые переходы I рода из сверхпроводящего в нормальное состояние.

При фазовых переходах II рода сама величина G и первые производные G по T, р и др. меняются непрерывно, а вторые производные (соотв. , коэф. и термич. расширения) при непрерывном изменении параметров меняются скачком либо сингулярны. Теплота не выделяется и не поглощается, явления гистерезиса и метаста-бильные состояния отсутствуют. К фазовым переходам II рода, наблюдаемым при изменении т-ры, относятся, напр., переходы из парамагнитного (неупорядоченного) состояния в магнитоупо-рядоченное (ферро- и ферримагнитное в , антиферромагнитное в ) с появлением спонтанной намагниченности (соотв. во всей решетке или в каждой из магн. подрешеток); переход - с появлением спонтанной ; возникновение упорядоченного состояния в (в упорядочивающихся ); переход смектич. в нематич. фазу, сопровождающийся аномальным ростом , а также переходы между разл. смектич. фазами; l -переход в 4 He, сопровождающийся возникновением аномально высокой и сверхтекучести (см. ); переход в сверхпроводящее состояние в отсутствие магн. поля.

Фазовые переходы могут быть связаны с изменением . Многие в-ва при малых кристаллизуются в неплотноупако-ванные структуры. Напр., структура представляет собой ряд далеко отстоящих друг от друга слоев . При достаточно высоких таким рыхлым структурам соответствуют большие значения , а меньшим значениям отвечают равновесные плотноупако-ванные фазы. Поэтому при больших переходит в . Квантовые 4 He и 3 He при нормальном остаются жидкими вплоть до самых низких из достигнутых т-р вблизи абс. нуля. Причина этого - в слабом взаимод. и большой амплитуде их "нулевых колебаний" (высокой вероятности квантового туннелирования из одного фиксированного положения в другое). Однако повышение приводит к затвердеванию жидкого ; напр., 4 He при 2,5 МПа образует гексаген, плотноупакован-ную решетку.

Общая трактовка фазовых переходов II рода предложена Л. Д. Ландау в 1937. Выше точки перехода система, как правило, обладает более высокой , чем ниже точки перехода, поэтому фазовый переход II рода трактуется как точка изменения . Напр., в выше направления спиновых магн. моментов частиц распределены хаотически, поэтому одновременное вращение всех вокруг одной и той же оси на одинаковый угол не меняет физ. св-в системы. Ниже точки перехода имеют преимуществ. ориентацию, и совместный их поворот в указанном выше смысле изменяет направление магн. момента системы. В двухкомпо-нентном , к-рого А и В расположены в узлах простой кубич. кристаллич. решетки, неупорядоченное состояние характеризуется хаотич. распределением А и В по узлам решетки, так что сдвиг решетки на один период не меняет св-в. Ниже точки перехода располагаются упорядочено: ...ABAB... Сдвиг такой решетки на период приводит к замене всех А на В и наоборот. T. обр., решетки уменьшается, т. к. подрешетки, образуемые А и В, становятся неэквивалентными.

Появляется и исчезает скачком; при этом нарушение можно охарактеризовать физ. величиной, к-рая при фазовых переходах II рода изменяется непрерывно и наз. параметром порядка. Для чистых таким параметром является плотность, для р-ров - состав, для ферро- и - спонтанная намагниченность, для сегне-тоэлектриков - спонтанная электрич. , для - доля упорядочившихся для смектич. - амплитуда волны плотности и т. п. Во всех перечисленных случаях при т-рах выше точки фазовых переходов II рода параметр порядка равен нулю, ниже этой точки начинается его аномальный рост, приводящий к макс. значению при T = O.

Отсутствие теплоты перехода, скачков плотности, и , характерное для фазовых переходов II рода, наблюдается и в критич. точке на кривых фазовых переходов I рода (см. ). Сходство оказывается очень глубоким. Состояние в-ва около критич. точки также можно охарактеризовать величиной, играющей роль параметра порядка. Напр., в случае - таким параметром служит отклонение плотности в-ва от критич. значения: при движении по критич. изохоре со стороны высоких т-р однороден и отклонение плотности от критич. значения равно нулю, а ниже критич. т-ры в-во расслаивается на две фазы, в каждой из к-рых отклонение плотности от критической не равно нулю.

Поскольку вблизи точки фазового перехода II рода фазы мало отличаются друг от друга, возможно существование флуктуации параметра порядка, точно так же, как вблизи критич. точки. С этим связаны критич. явления в точках фазовых переходов II рода: аномальный рост магн. восприимчивости и диэлектрич. восприимчивости (аналогом является рост вблизи критич. точки перехода - ); резкий рост ; аномальное рассеяние световых волн в системе