История водородной бомбы. Создатели водородной бомбы. испытание водородной бомбы в ссср, сша, кндр. Видео: испытания в ссср

ВОДОРОДНАЯ БОМБА
оружие большой разрушительной силы (порядка мегатонн в тротиловом эквиваленте), принцип действия которого основан на реакции термоядерного синтеза легких ядер. Источником энергии взрыва являются процессы, аналогичные процессам, протекающим на Солнце и других звездах.
Термоядерные реакции. В недрах Солнца содержится гигантское количество водорода, находящегося в состоянии сверхвысокого сжатия при температуре ок. 15 000 000 К. При столь высоких температуре и плотности плазмы ядра водорода испытывают постоянные столкновения друг с другом, часть из которых завершается их слиянием и в конечном счете образованием более тяжелых ядер гелия. Подобные реакции, носящие название термоядерного синтеза, сопровождаются выделением огромного количества энергии. Согласно законам физики, энерговыделение при термоядерном синтезе обусловлено тем, что при образовании более тяжелого ядра часть массы вошедших в его состав легких ядер превращается в колоссальное количество энергии. Именно поэтому Солнце, обладая гигантской массой, в процессе термоядерного синтеза ежедневно теряет ок. 100 млрд. т вещества и выделяет энергию, благодаря которой стала возможной жизнь на Земле.
Изотопы водорода. Атом водорода - простейший из всех существующих атомов. Он состоит из одного протона, являющегося его ядром, вокруг которого вращается единственный электрон. Тщательные исследования воды (H2O) показали, что в ней в ничтожном количестве присутствует "тяжелая" вода, содержащая "тяжелый изотоп" водорода - дейтерий (2H). Ядро дейтерия состоит из протона и нейтрона - нейтральной частицы, по массе близкой к протону. Существует третий изотоп водорода - тритий, в ядре которого содержатся один протон и два нейтрона. Тритий нестабилен и претерпевает самопроизвольный радиоактивный распад, превращаясь в изотоп гелия. Следы трития обнаружены в атмосфере Земли, где он образуется в результате взаимодействия космических лучей с молекулами газов, входящих в состав воздуха. Тритий получают искусственным путем в ядерном реакторе, облучая изотоп литий-6 потоком нейтронов.
Разработка водородной бомбы. Предварительный теоретический анализ показал, что термоядерный синтез легче всего осуществить в смеси дейтерия и трития. Приняв это за основу, ученые США в начале 1950 приступили к реализации проекта по созданию водородной бомбы (HB). Первые испытания модельного ядерного устройства были проведены на полигоне Эниветок весной 1951; термоядерный синтез был лишь частичным. Значительный успех был достигнут 1 ноября 1951 при испытании массивного ядерного устройства, мощность взрыва которого составила 4е8 Мт в тротиловом эквиваленте. Первая водородная авиабомба была взорвана в СССР 12 августа 1953, а 1 марта 1954 на атолле Бикини американцы взорвали более мощную (примерно 15 Мт) авиабомбу. С тех пор обе державы проводили взрывы усовершенствованных образцов мегатонного оружия. Взрыв на атолле Бикини сопровождался выбросом большого количества радиоактивных веществ. Часть из них выпала в сотнях километров от места взрыва на японское рыболовецкое судно "Счастливый дракон", а другая покрыла остров Ронгелап. Поскольку в результате термоядерного синтеза образуется стабильный гелий, радиоактивность при взрыве чисто водородной бомбы должна быть не больше, чем у атомного детонатора термоядерной реакции. Однако в рассматриваемом случае прогнозируемые и реальные радиоактивные осадки значительно различались по количеству и составу.
Механизм действия водородной бомбы. Последовательность процессов, происходящих при взрыве водородной бомбы, можно представить следующим образом. Сначала взрывается находящийся внутри оболочки HБ заряд-инициатор термоядерной реакции (небольшая атомная бомба), в результате чего возникает нейтронная вспышка и создается высокая температура, необходимая для инициации термоядерного синтеза. Нейтроны бомбардируют вкладыш из дейтерида лития - соединения дейтерия с литием (используется изотоп лития с массовым числом 6). Литий-6 под действием нейтронов расщепляется на гелий и тритий. Таким образом, атомный запал создает необходимые для синтеза материалы непосредственно в самой приведенной в действие бомбе. Затем начинается термоядерная реакция в смеси дейтерия с тритием, температура внутри бомбы стремительно нарастает, вовлекая в синтез все большее и большее количество водорода. При дальнейшем повышении температуры могла бы начаться реакция между ядрами дейтерия, характерная для чисто водородной бомбы. Все реакции, конечно, протекают настолько быстро, что воспринимаются как мгновенные.
Деление, синтез, деление (супербомба). На самом деле в бомбе описанная выше последовательность процессов заканчивается на стадии реакции дейтерия с тритием. Далее конструкторы бомбы предпочли использовать не синтез ядер, а их деление. В результате синтеза ядер дейтерия и трития образуются гелий и быстрые нейтроны, энергия которых достаточно велика, чтобы вызвать деление ядер урана-238 (основной изотоп урана, значительно более дешевый, чем уран-235, используемый в обычных атомных бомбах). Быстрые нейтроны расщепляют атомы урановой оболочки супербомбы. Деление одной тонны урана создает энергию, эквивалентную 18 Мт. Энергия идет не только на взрыв и выделение тепла. Каждое ядро урана расщепляется на два сильно радиоактивных "осколка". В число продуктов деления входят 36 различных химических элементов и почти 200 радиоактивных изотопов. Все это и составляет радиоактивные осадки, сопровождающие взрывы супербомб. Благодаря уникальной конструкции и описанному механизму действия оружие такого типа может быть сделано сколь угодно мощным. Оно гораздо дешевле атомных бомб той же мощности.
Последствия взрыва. Ударная волна и тепловой эффект. Прямое (первичное) воздействие взрыва супербомбы носит тройственный характер. Наиболее очевидное из прямых воздействий - это ударная волна огромной интенсивности. Сила ее воздействия, зависящая от мощности бомбы, высоты взрыва над поверхностью земли и характера местности, уменьшается с удалением от эпицентра взрыва. Тепловое воздействие взрыва определяется теми же факторами, но, кроме того, зависит и от прозрачности воздуха - туман резко уменьшает расстояние, на котором тепловая вспышка может вызвать серьезные ожоги. Согласно расчетам, при взрыве в атмосфере 20-мегатонной бомбы люди останутся живы в 50% случаев, если они 1) укрываются в подземном железобетонном убежище на расстоянии примерно 8 км от эпицентра взрыва (ЭВ), 2) находятся в обычных городских постройках на расстоянии ок. 15 км от ЭВ, 3) оказались на открытом месте на расстоянии ок. 20 км от ЭВ. В условиях плохой видимости и на расстоянии не менее 25 км, если атмосфера чистая, для людей, находящихся на открытой местности, вероятность уцелеть быстро возрастает с удалением от эпицентра; на расстоянии 32 км ее расчетная величина составляет более 90%. Площадь, на которой возникающее во время взрыва проникающее излучение вызывает летальный исход, сравнительно невелика даже в случае супербомбы высокой мощности.
Огненный шар. В зависимости от состава и массы горючего материала, вовлеченного в огненный шар, могут образовываться гигантские самоподдерживающиеся огненные ураганы, бушующие в течение многих часов. Однако самое опасное (хотя и вторичное) последствие взрыва - это радиоактивное заражение окружающей среды.
Радиоактивные осадки. Как они образуются.
При взрыве бомбы возникший огненный шар наполняется огромным количеством радиоактивных частиц. Обычно эти частицы настолько малы, что, попав в верхние слои атмосферы, могут оставаться там в течение долгого времени. Но если огненный шар соприкасается с поверхностью Земли, все, что на ней находится, он превращает в раскаленные пыль и пепел и втягивает их в огненный смерч. В вихре пламени они перемешиваются и связываются с радиоактивными частицами. Радиоактивная пыль, кроме самой крупной, оседает не сразу. Более мелкая пыль уносится возникшим в результате взрыва облаком и постепенно выпадает по мере движения его по ветру. Непосредственно в месте взрыва радиоактивные осадки могут быть чрезвычайно интенсивными - в основном это оседающая на землю крупная пыль. В сотнях километров от места взрыва и на более далеких расстояниях на землю выпадают мелкие, но все еще видимые глазом частицы пепла. Часто они образуют похожий на выпавший снег покров, смертельно опасный для всех, кто окажется поблизости. Еще более мелкие и невидимые частицы, прежде чем они осядут на землю, могут странствовать в атмосфере месяцами и даже годами, много раз огибая земной шар. К моменту выпадения их радиоактивность значительно ослабевает. Наиболее опасным остается излучение стронция-90 с периодом полураспада 28 лет. Его выпадение четко наблюдается повсюду в мире. Оседая на листве и траве, он попадает в пищевые цепи, включающие и человека. Как следствие этого, в костях жителей большинства стран обнаружены заметные, хотя и не представляющие пока опасности, количества стронция-90. Накопление стронция-90 в костях человека в долгосрочной перспективе весьма опасно, так как приводит к образованию костных злокачественных опухолей.
Длительное заражение местности радиоактивными осадками. В случае военных действий применение водородной бомбы приведет к немедленному радиоактивному загрязнению территории в радиусе ок. 100 км от эпицентра взрыва. При взрыве супербомбы загрязненным окажется район в десятки тысяч квадратных километров. Столь огромная площадь поражения одной-единственной бомбой делает ее совершенно новым видом оружия. Даже если супербомба не попадет в цель, т.е. не поразит объект ударно-тепловым воздействием, проникающее излучение и сопровождающие взрыв радиоактивные осадки сделают окружающее пространство непригодным для обитания. Такие осадки могут продолжаться в течение многих дней, недель и даже месяцев. В зависимости от их количества интенсивность радиации может достичь смертельно опасного уровня. Сравнительно небольшого числа супербомб достаточно, чтобы полностью покрыть крупную страну слоем смертельно опасной для всего живого радиоактивной пыли. Таким образом, создание сверхбомбы ознаменовало начало эпохи, когда стало возможным сделать непригодными для обитания целые континенты. Даже спустя длительное время после прекращения прямого воздействия радиоактивных осадков будет сохраняться опасность, обусловленная высокой радиотоксичностью таких изотопов, как стронций-90. С продуктами питания, выращенными на загрязненных этим изотопом почвах, радиоактивность будет поступать в организм человека.
См. также
ЯДЕРНЫЙ СИНТЕЗ ;
ЯДЕРНОЕ ОРУЖИЕ ;
ВОЙНА ЯДЕРНАЯ .
ЛИТЕРАТУРА
Действие ядерного оружия. М., 1960 Ядерный взрыв в космосе, на земле и под землей. М., 1970

Энциклопедия Кольера. - Открытое общество . 2000 .

Смотреть что такое "ВОДОРОДНАЯ БОМБА" в других словарях:

    Устаревшее название ядерной бомбы большой разрушительной силы, действие которой основано на использовании энергии, выделяющейся при реакции синтеза легких ядер (см. Термоядерные реакции). Впервые водородная бомба была испытана в СССР (1953) … Большой Энциклопедический словарь

    Термоядерное оружие тип оружия массового поражения, разрушительная сила которого основана на использовании энергии реакции ядерного синтеза легких элементов в более тяжёлые (например, синтеза двух ядер атомов дейтерия (тяжелого водорода) в одно… … Википедия

    Ядерная бомба большой разрушительной силы, действие которой основано на использовании энергии, выделяющейся при реакции синтеза лёгких ядер (см. Термоядерные реакции). Первый термоядерный заряд (мощностью 3 Мт) взорван 1 ноября 1952 в США.… … Энциклопедический словарь

    водородная бомба - vandenilinė bomba statusas T sritis chemija apibrėžtis Termobranduolinė bomba, kurios užtaisas – deuteris ir tritis. atitikmenys: angl. H bomb; hydrogen bomb rus. водородная бомба ryšiai: sinonimas – H bomba … Chemijos terminų aiškinamasis žodynas

    водородная бомба - vandenilinė bomba statusas T sritis fizika atitikmenys: angl. hydrogen bomb vok. Wasserstoffbombe, f rus. водородная бомба, f pranc. bombe à hydrogène, f … Fizikos terminų žodynas

    водородная бомба - vandenilinė bomba statusas T sritis ekologija ir aplinkotyra apibrėžtis Bomba, kurios branduolinis užtaisas – vandenilio izotopai: deuteris ir tritis. atitikmenys: angl. H bomb; hydrogen bomb vok. Wasserstoffbombe, f rus. водородная бомба, f … Ekologijos terminų aiškinamasis žodynas

    Бомба взрывного действия большой разрушительной силы. Действие В. б. основано на термоядерной реакции. См. Ядерное оружие … Большая советская энциклопедия

Водородная, или термоядерная бомба стала краеугольным камнем гонки вооружений между США и СССР. Две сверхдержавы несколько лет спорили о том, кто станет первым обладателем нового вида разрушительного оружия.

Проект термоядерного оружия

В начале холодной войны испытание водородной бомбы было для руководства СССР важнейшим аргументом в борьбе с США. В Москве хотели достичь ядерного паритета с Вашингтоном и вкладывали в гонку вооружений огромные средства. Впрочем, работы по созданию водородной бомбы начались не благодаря щедрому финансированию, а из-за донесений законспирированной агентуры в Америке. В 1945 года в Кремле узнали о том, что в США идет подготовка к созданию нового оружия. Это была сверхбомба, проект которой получил название Super.

Источником ценной информации был Клаус Фукс - сотрудник Лос-Аламосской национальной лаборатории США. Он передал Советскому Союзу конкретные сведения, которые касались секретных американских разработок сверхбомбы. К 1950 году проект Super был выброшен в корзину, так как западным ученым стало ясно, что такая схема нового оружия не может быть реализована. Руководителем этой программы был Эдвард Теллер.

В 1946 году Клаус Фукс и Джон развили идеи проекта Super и запатентовали собственную систему. Принципиально новым в ней был принцип радиоактивной имплозии. В СССР эту схему начали рассматривать несколько позже - в 1948 году. В целом можно сказать, что на стартовом этапе полностью базировался на американских информации, полученной разведкой. Но, продолжая исследования уже на основе этих материалов, советские ученые заметно опередили своих западных коллег, то позволило СССР получить сначала первую, а потом и самую мощную термоядерную бомбу.

17 декабря 1945 года на заседании специального комитета, созданного при Совете Народных комиссаров СССР, физики-ядерщики Яков Зельдович, Исаак Померанчук и Юлий Хартион выступили с докладом «Использование ядерной энергии легких элементов». В этом документе рассматривалась возможность использования бомбы с дейтерием. Данное выступление стало началом советской ядерной программы.

В 1946 году теоретические исследования тали проводиться в Институте химической физики. Первые результаты этой работы были обсуждены на одном из заседаний Научно-технического совета в Первом главном управлении. Еще через два года Лаврентий Берия поручил Курчатову и Харитону проанализировать материалы о системе фон Неймана, которые были доставлены в Советский Союз благодаря законспирированной агентуре на западе. Данные из этих документов дали дополнительный импульс исследованиям, благодаря которым родился проект РДС-6.

«Иви Майк» и «Кастл Браво»

1 ноября 1952 года американцы испытали первое в мире термоядерное Это была еще не бомба, но уже ее важнейшая составная часть. Подрыв произошел на атолле Энивотек, в Тихом океане. и Станислав Улам (каждый из них фактически создатель водородной бомбы) незадолго до того разработали двухступенчатую конструкцию, которую американцы и опробовали. Устройство не могло использоваться в качестве оружия, так как производился с помощью дейтерия. Кроме того, оно отличалось огромным весом и габаритами. Такой снаряд просто нельзя было сбросить с самолета.

Испытание первой водородной бомбы было проведено советскими учеными. После того как в США узнали об успешном использовании РДС-6с, стало ясно что необходимо как можно быстрее сократить отставание от русских в гонке вооружений. Американское испытание прошло 1 марта 1954 года. В качестве полигона был выбран атолл Бикини на Маршалловых островах. Тихоокеанские архипелаги выбирались не случайно. Здесь почти не было населения (а те немногие люди, которые жили на близлежащих островах, были выселена накануне эксперимента).

Самый разрушительный взрыв водородной бомбы американцев стал известен как «Кастл Браво». Мощность заряда оказалась в 2,5 раза выше предполагаемой. Взрыв привел к радиационному заражению значительной площади (множества островов и Тихого океана), что привело к скандалу и пересмотру ядерной программы.

Разработка РДС-6с

Проект первой советской термоядерной бомбы получил название РДС-6с. План был написан выдающимся физиком Андреем Сахаровым. В 1950 году Совет министров СССР постановил сосредоточить работы над созданием нового оружия в КБ-11. Согласно этому решению, группа ученых под руководством Игоря Тамма отправилась в закрытый Арзамас-16.

Специально для этого грандиозного проекта был подготовлен Семипалатинский полигон. Перед тем как началось испытание водородной бомбы, там были установлены многочисленные измерительные, киносъемочные и регистрирующие приборы. Кроме того, по поручению ученых там появились почти две тысячи индикаторов. Область, которую затронуло испытание водородной бомбы, включала в себя 190 сооружений.

Семипалатинский эксперимент был уникальным не только из-за нового вида оружия. Использовались уникальные заборники, предназначенные для химических и радиоактивных проб. Их могла открыть только мощная ударная волна. Регистрирующие и киносъемочные приборы были установлены в специально подготовленных укрепленных сооружениях на поверхности и в подземных бункерах.

Alarm Clock

Еще в 1946 году Эдвард Теллер, работавший в США, разработал прототип РДС-6с. Он получил название Alarm Clock. Первоначально проект этого устройства был предложен как альтернатива Super. В апреле 1947 года в лаборатории в Лос-Аламосе началась целая серия экспериментов, предназначенная для исследования природы термоядерных принципов.

От Alarm Clock ученые ожидали наибольшего энерговыделения. Осенью Теллер решил использовать в качестве горючего для устройства дейтерид лития. Исследователи еще не использовали это вещество, но ожидали, что оно позволит повысить эффективность Интересно, что Теллер уже тогда отмечал в своих служебных записках зависимость ядерной программы от дальнейшего развития компьютеров. Эта техника была необходима ученым для более точных и сложных расчетов.

Alarm Clock и РДС-6с имели много общего, но многим и отличались. Американский вариант не был столь практичным как советский из-за своей величины. Большие размеры он унаследовал от проекта Super. В конце концов, американцам пришлось отказаться от этой разработки. Последние исследования прошли в 1954 году, после чего стало ясно, что проект нерентабелен.

Взрыв первой термоядерной бомбы

Первое в человеческой истории испытание водородной бомбы произошло 12 августа 1953 года. Утром на горизонте появилась ярчайшая вспышка, которая слепила даже через защитные очки. Взрыв РДС-6с оказался в 20 раз мощнее атомной бомбы. Эксперимент был признан удачным. Ученые смогли достичь важного технологического прорыва. Впервые в качестве горючего был использован гидрид лития. В радиусе 4 километров от эпицентра взрыва волной уничтожило все постройки.

Последующие испытания водородной бомбы в СССР основывались на опыте, полученном при использовании РДС-6с. Это разрушительное оружие было не только самым мощным. Важным достоинством бомбы являлась ее компактность. Снаряд помещался в бомбардировщик Ту-16. Успех позволил советским ученым опередить американцев. В США в это время было термоядерное устройство, размером с дом. Оно было нетранспортабельным.

Когда в Москве заявили, что водородная бомба СССР уже готова, в Вашингтоне оспорили эту информацию. Главным аргументом американцев был тот факт, что термоядерная бомба должна быть изготовлена по схеме Теллера-Улама. В ее основе лежал принцип радиационной имплозии. Этот проект будет реализован в СССР через два года, в 1955-м.

В создание РДС-6с наибольший вклад внес физик Андрей Сахаров. Водородная бомба была его детищем - именно он предложил революционные те технические решения, которые позволили успешно завершить испытания на Семипалатинском полигоне. Молодой Сахаров сразу же стал академиком в АН СССР, Героем Социалистического Труда и лауреатом Сталинской премии. Наград и медалей удостоились и другие ученые: Юлий Харитон, Кирилл Щелкин, Яков Зельдович, Николай Духов и т. д. В 1953 испытание водородной бомбы показало, что советская наука может преодолеть то, что еще совсем недавно казалось выдумкой и фантастикой. Поэтому сразу после успешного взрыва РДС-6с началась разработка еще более мощных снарядов.

РДС-37

20 ноября 1955 года прошли очередные испытания водородной бомбы в СССР. На этот раз она была двухступенчатой и соответствовала схеме Теллера-Улама. Бомбу РДС-37 собирались сбросить с самолета. Однако, когда он поднялся в воздух, стало ясно что испытания придется проводить при нештатной ситуации. Вопреки прогнозам синоптиков, заметно испортилась погода, из-за чего полигон накрыла плотная облачность.

Впервые специалисты оказались вынуждены сажать самолет с термоядерной бомбой на борту. Некоторое время на Центральном командном пункте шла дискуссия о том, что делать дальше. Рассматривалось предложение сбросить бомбу в горах неподалеку, однако этот вариант был отклонен, как слишком рискованный. Меж тем самолет продолжал кружить рядом с полигоном, вырабатывая горючее.

Решающее слово получили Зельдович и Сахаров. Водородная бомба, взорвавшаяся не на полигоне, привела бы к катастрофе. Ученые понимали всю степень риска и собственной ответственности, и все-таки дали письменное подтверждение того, что посадка самолета будет безопасной. Наконец, командир экипажа Ту-16 Федор Головашко получил команду приземляться. Посадка была очень плавной. Летчики проявили все свои умения и не запаниковали в критической ситуации. Маневр был идеальным. В Центральном командном пункте облегченно выдохнули.

Создатель водородной бомбы Сахаров и его команда перенесли испытания. Вторая попытка была намечена на 22 ноября. В этот день все прошло без внештатных ситуаций. Бомбу сбросили с высоты в 12 километров. Пока снаряд падал, самолет успел удалиться на безопасное расстояние от эпицентра взрыва. Через несколько минут ядерный гриб достиг высоты 14 километров, а его диаметр - 30 километров.

Взрыв не обошелся без трагических происшествий. От ударной волны на расстоянии в 200 километров выбивало стекла, из-за чего пострадало несколько человек. Также погибла девочка, жившая в соседнем ауле, на которую обвалился потолок. Еще одной жертвой стал солдат, находившийся в специальном выжидательном районе. Солдата засыпало в землянке, и он умер от удушья до того, как товарищи смогли вытащить его.

Разработка «Царь-бомбы»

В 1954 году лучшие физики-ядерщики страны под руководством начали разработку мощнейшей в истории человечества термоядерной бомбы. В этом проекте также приняли участие Андрей Сахаров, Виктор Адамский, Юрий Бабаев, Юрий Смирнов, Юрий Трутнев и т. д. Благодаря своей мощности и размеру бомба стала известна как «Царь-бомба». Участники проекта позже вспоминали, что эта фраза появилась после знаменитого высказывания Хрущева о «Кузькиной матери» в ООН. Официально же проект назывался АН602.

За семь лет разработок бомба пережила несколько реинкарнаций. Сначала ученые планировали использовать компоненты из урана и реакцию Джекилла-Хайда, однако позже от этой идеи пришлось отказаться из-за опасности радиоактивного загрязнения.

Испытание на Новой Земле

На некоторое время проект «Царь-бомба» был заморожен, так как Хрущев собирался в США, а в холодной войне наступила короткая пауза. В 1961 году конфликт между странами разгорелся вновь и в Москве снова вспомнили о термоядерном оружии. Хрущев сообщил о предстоящих испытаниях в октябре 1961 года во время XXII съезда КПСС.

30 числа Ту-95В с бомбой на борту вылетел из Оленьи и направился на Новую Землю. Самолет добирался до цели два часа. Очередная советская водородная бомба была сброшена на высоте в 10,5 тысяч метров над ядерным полигоном «Сухой Нос». Снаряд взорвался еще в воздухе. Возник огненный шар, который достиг диаметра трех километров и почти коснулся земли. Согласно подсчетам, ученых сейсмическая волна от взрыва три раза пересекла планету. Удар чувствовался за тысячу километров, а все живое на расстоянии ста километров могло получить ожоги третьей степени (этого не произошло, так как данный район был необитаемым).

На тот момент наиболее мощная термоядерная бомба США в мощности уступала «Царю-бомбе» в четыре раза. Советское руководство было довольно результатом эксперимента. В Москве получили то, чего так хотели от очередной водородной бомбы. Испытание продемонстрировало, что у СССР есть оружие куда более мощное чем у США. В дальнейшем разрушительный рекорд «Царя-бомбы» так и не был побит. Самый мощный взрыв водородной бомбы стал важнейшей вехой в истории науки и холодной войны.

Термоядерное оружие других стран

Британские разработки водородной бомбы начались в 1954 году. Руководителем проекта был Уильям Пенней, который до того был участником манхэттенского проекта в США. Англичане обладали крохами информации о строении термоядерного оружия. Американские союзники не делились этой информацией. В Вашингтоне ссылались на закон об атомной энергии, принятый в 1946 году. Единственным исключением для британцев было разрешение вести наблюдения за испытаниями. Кроме того, они использовали самолеты для сбора проб, оставшихся после взрывов американских снарядов.

Сперва в Лондоне решили ограничиться созданием очень мощной атомной бомбы. Так начались испытания «Оранжевый вестник». В ходе них была сброшена самая мощная из не термоядерных бомб в истории человечества. Ее недостатком была чрезмерная дороговизна. 8 ноября 1957 года была испытана водородная бомба. История создания британского двухступенчатого устройства - это пример успешного прогресса в условиях отставания от двух споривших между собой сверхдержав.

В Китае водородная бомба появилась в 1967 году, во Франции - в 1968-м. Таким образом, в клубе стран-обладательниц термоядерного оружия сегодня пять государств. Спорными остаются сведения о водородной бомбе в Северной Корее. Глава КНДР заявлял, что его ученые смогли разработать такой снаряд. В ходе испытаний сейсмологи разных стран зафиксировали сейсмическую активность, вызванную ядерным взрывом. Но никакой конкретной информации о водородной бомбе в КНДР до сих пор нет.

Олег Александрович Лаврентьев, герой нашего рассказа, родился в 1926 году в Пскове. До войны парень успел окончить семь классов. Видимо, где-то под конец этого процесса в его руки попала книжка, рассказывающая о физике атомного ядра и последних открытиях в этой области.

30-е годы XX века были временем открытия новых горизонтов. В 1930 году было предсказано существование нейтрино , в 1932 году открыт нейтрон . В последующие годы были построены первые ускорители элементарных частиц. Возник вопрос о возможности существования трансурановых элементов. В 1938 году Отто Ган впервые получил барий, облучая уран нейтронами, а Лиза Мейтнер смогла объяснить, что произошло. Через несколько месяцев она же предсказала цепную реакцию. До постановки вопроса об атомной бомбе оставался один шаг.

Нет ничего удивительного в том, что хорошее описание этих открытий запало в душу подростка. Несколько нетипичнее то, что этот заряд сохранился в ней во всех последующих передрягах. А потом была война. Олег Лаврентьев успел поучаствовать в ее завершающей стадии, в Прибалтике. Затем перипетии службы забросили его на Сахалин. В части была относительно неплохая библиотека, а на свое денежное довольствие Лаврентьев, тогда уже сержант, выписал журнал «Успехи физических наук» , чем, видимо, произвел немалое впечатление на сослуживцев. Командование поддержало энтузиазм своего подчиненного. В 1948 году он читал лекции по ядерной физике офицерам части, а в следующем году получил аттестат зрелости, пройдя за год трехлетний курс в местной вечерней школе рабочей молодежи. Неизвестно, чему и как там на самом деле учили, но сомневаться в качестве образования младшего сержанта Лаврентьева не приходится - результат был нужен ему самому.

Как вспоминал он сам через много лет, мысль о возможности термоядерной реакции и ее использовании для получения энергии впервые посетила его в 1948 году, как раз при подготовке лекции для офицеров. В январе 1950 года Президент Трумэн, выступая перед Конгрессом, призвал к скорейшему созданию водородной бомбы. Это было ответом на первое советское ядерное испытание в августе предыдущего года. Ну а для младшего сержанта Лаврентьева это было толчком к немедленным действиям: ведь он-то знал, как ему на тот момент думалось, как сделать эту бомбу и опередить потенциального противника.

Первое письмо с описанием идеи, адресованное Сталину, осталось без ответа, и какие-либо его следы впоследствии найдены не были. Скорее всего, оно просто потерялось. Следующее письмо было отправлено надежнее: в ЦК ВКП(б) через Поронайский горком.

В этот раз реакция была заинтересованной. Из Москвы через Сахалинский обком пришла команда выделить настойчивому солдату охраняемую комнату и все необходимое для подробного описания предложений.

Спецработа

На этом месте уместно прервать рассказ о датах и событиях и обратиться к содержанию сделанных высшей советской инстанции предложений.

1. Основные идеи.

2. Опытная установка по преобразованию энергии литиево-водородных реакций в электрическую.

3. Опытная установка по преобразованию энергии урановых и трансурановых реакций в электрическую.

4. Литиево-водородная бомба (конструкция).

Далее О. Лаврентьев пишет, что подготовить части 2 и 3 в подробном виде не успел и вынужден ограничиться кратким конспектом, часть 1 тоже сыровата («написана весьма поверхностно»). По сути, в предложениях рассматриваются два устройства: бомба и реактор, при этом последняя, четвертая, часть - там, где предлагается бомба, - крайне лаконична, это всего несколько фраз, смысл которых сводится к тому, что все уже разобрано в первой части.

В таком виде, «на 12 листах», предложения Ларионова в Москве попали на рецензию к А.Д.Сахарову , тогда еще кандидату физматнаук, а главное, одному из тех людей, которые в СССР тех лет занимались вопросами термоядерной энергии, в основном подготовкой бомбы.

Сахаров выделил в предложении два основных момента: осуществление термоядерной реакции лития с водородом (их изотопов) и конструкция реактора. В написанном, вполне благожелательном, отзыве о первом пункте говорилось кратко - это не подходит.

Непростая бомба

Чтобы ввести читателя в контекст, необходимо сделать краткий экскурс в реальное положение дел. В современной (а, насколько можно судить по открытым источникам, базовые принципы конструкции с конца пятидесятых годов практически не изменились) водородной бомбе роль термоядерной «взрывчатки» выполняет гидрид лития – твердое белое вещество, бурно реагирующее с водой с образованием гидроксида лития и водорода. Последнее свойство дает возможность широко применять гидрид там, где нужно временно связать водород. Хорошим примером является воздухоплавание, но им список, конечно, не исчерпывается.

Гидрид, применяемый в водородных бомбах, отличается своим изотопным составом. Вместо «обычного» водорода в его составе участвует дейтерий, а вместо «обычного» лития - его более легкий изотоп с тремя нейтронами. Получившийся дейтерид лития, 6 LiD, содержит почти все необходимое для большой иллюминации. Чтобы инициировать процесс, достаточно всего-навсего взорвать расположенный поблизости (например, вокруг или, наоборот, внутри) ядерный заряд. Образовавшиеся при взрыве нейтроны поглощаются литием-6, который в результате распадается с образованием гелия и трития. Повышение давления и температуры в результате ядерного взрыва приводит к тому, что вновь появившийся тритий и дейтерий, бывший на месте событий изначально, оказываются в условиях, необходимых для начала термоядерной реакции. Ну вот и все, готово.

А
Б
В
Г
Д В сжатом и разогретом дейтериде лития-6 происходит реакция слияния, испускаемый нейтронный поток является инициатором реакции расщепления тампера. Огненный шар расширяется…" alt="А Боеголовка перед взрывом; первая ступень вверху, вторая ступень внизу. Оба компонента термоядерной бомбы.
Б Взрывчатое вещество подрывает первую ступень, сжимая ядро плутония до сверхкритического состояния и инициируя цепную реакцию расщепления.
В В процессе расщепления в первой ступени происходит импульс рентгеновского излучения, который распространяется вдоль внутренней части оболочки, проникая через наполнитель из пенополистирола.
Г Вторая ступень сжимается вследствие абляции (испарения) под воздействием рентгеновского излучения, и плутониевый стержень внутри второй ступени переходит в сверхкритическое состояние, инициируя цепную реакцию, выделяя огромное количество тепла.
Д В сжатом и разогретом дейтериде лития-6 происходит реакция слияния, испускаемый нейтронный поток является инициатором реакции расщепления тампера. Огненный шар расширяется…" src="/sites/default/files/images_custom/2017/07/bombh_explosion-ru.svg.png">

А Боеголовка перед взрывом; первая ступень вверху, вторая ступень внизу. Оба компонента термоядерной бомбы.
Б Взрывчатое вещество подрывает первую ступень, сжимая ядро плутония до сверхкритического состояния и инициируя цепную реакцию расщепления.
В В процессе расщепления в первой ступени происходит импульс рентгеновского излучения, который распространяется вдоль внутренней части оболочки, проникая через наполнитель из пенополистирола.
Г Вторая ступень сжимается вследствие абляции (испарения) под воздействием рентгеновского излучения, и плутониевый стержень внутри второй ступени переходит в сверхкритическое состояние, инициируя цепную реакцию, выделяя огромное количество тепла.
Д В сжатом и разогретом дейтериде лития-6 происходит реакция слияния, испускаемый нейтронный поток является инициатором реакции расщепления тампера. Огненный шар расширяется…

/ © Википедия

Этот путь не является единственным и уж тем более обязательным. Вместо дейтерида лития можно использовать готовый тритий в смеси с дейтерием. Проблема в том, что оба они - газы, которые сложно содержать и перевозить, не говоря уже о том, чтобы запихнуть в бомбу. Получающаяся конструкция вполне пригодна для взрыва на испытаниях, таковые производились . Проблема только в том, что ее невозможно доставить «адресату» - размеры сооружения исключают такую возможность напрочь. Дейтерид лития, будучи твердым веществом, позволяет элегантно обойти эту проблему.

Изложенное здесь совсем не сложно для нас, живущих сегодня. В 1950 году это было сверхсекретом, доступ к которому имел крайне ограниченный круг лиц. Разумеется, солдат, несущий службу на Сахалине, в этот круг не входил. При этом свойства гидрида лития сами по себе тайной не были, любой мало-мальски компетентный, например в вопросах воздухоплавания, человек о них знал. Неслучайно Виталий Гинзбург , автор идеи применения дейтерида лития в бомбе, на вопрос об авторстве обычно отвечал в том духе, что вообще-то это слишком тривиально.

Конструкция бомбы Лаврентьева в общих чертах повторяет описанную выше. Здесь мы тоже видим инициирующий ядерный заряд и взрывчатку из гидрида лития, причем ее изотопный состав тот же - это дейтерид легкого изотопа лития. Принципиальное отличие в том, что вместо реакции дейтерия с тритием автор предполагает реакцию лития с дейтерием и/или водородом. Умница Лаврентьев догадался, что твердое вещество удобнее в применении и предложил использовать именно 6 Li, но лишь потому, что его реакция с водородом должна дать больше энергии. Чтобы выбрать для реакции другое горючее, требовались данные об эффективных сечениях термоядерных реакций, которых у солдата-срочника, конечно, не было.

Допустим, что Олегу Лаврентьеву еще раз повезло бы: он угадал нужную реакцию. Увы, даже это не сделало бы его автором открытия. Описанная выше конструкция бомбы разрабатывалась к тому времени уже более полутора лет. Разумеется, поскольку все работы были окружены сплошной секретностью, знать о них он не мог. Кроме того, конструкция бомбы - это не только схема размещения взрывчатки, это еще очень много расчетов и конструктивных тонкостей. Выполнить их автор предложения не мог.

Надо сказать, что полная неосведомленность о физических принципах будущей бомбы была характерна тогда и для людей куда более компетентных. Много лет спустя Лаврентьев вспоминал эпизод, бывший с ним чуть позднее, уже в студенческие времена. Проректор МГУ, читавший студентам физику, зачем-то взялся рассказать и о водородной бомбе, представлявшей собой, по его мнению, систему полива вражеской территории жидким водородом. А что? Заморозить врагов - милое дело. У слушавшего его студента Лаврентьева, который про бомбу знал немножко больше, невольно вырвалась нелицеприятная оценка услышанного, но ответить на язвительную реплику услышавшей ее соседки было нечем. Не рассказывать же ей все известные ему подробности.

Рассказанное, видимо, объясняет, почему о проекте «бомбы Лаврентьева» забыли практически сразу после его написания. Автор продемонстрировал недюжинные способности, но этим все и кончилось. Иная судьба оказалась у проекта термоядерного реактора.

Конструкция будущего реактора в 1950 году виделась его автору довольно простой. В рабочую камеру помешается два концентрических (один в другом) электрода. Внутренний выполняется в виде сетки, ее геометрия просчитывается таким образом, чтобы, насколько это возможно, минимизировать контакт с плазмой. На электроды подается постоянное напряжение порядка 0,5–1 мегавольт, причем внутренний электрод (сетка) является отрицательным полюсом, а внешний - положительным. Сама реакция идет в середине установки и вылетающие наружу, через сетку, положительно заряженные ионы (преимущественно, продукты реакции), двигаясь дальше, преодолевают сопротивление электрического поля, которое в итоге разворачивает большую их часть обратно. Энергия, затраченная ими на преодоление поля, - это и есть наш выигрыш, который относительно несложно «снять» с установки.

В качестве основного процесса опять предлагается реакция лития с водородом, которая опять не подходит по тем же причинам, но примечательно не это. Олег Лаврентьев оказался первым человеком, придумавшим изолировать плазму при помощи какого-нибудь поля. Даже то, что в его предложении эта роль, вообще говоря, второстепенна - главная функция электрического поля в том, чтобы получить энергию вылетающих из зоны реакции частиц, - ничуть не меняет значения этого факта.

Как впоследствии неоднократно заявлял Андрей Дмитриевич Сахаров, именно письмо сержанта с Сахалина впервые навело его на мысль использовать поле для удержания плазмы в термоядерном реакторе. Правда, Сахаров и его коллеги предпочли использовать другое поле - магнитное. Пока же он написал в рецензии, что предложенная конструкция скорее всего нереальна, ввиду невозможности сделать сетчатый электрод, который выдержал бы работу в таких условиях. А автора все равно надо поощрить за научную смелость.

Вскоре после отсылки предложений Олег Лаврентьев демобилизуется из армии, отправляется в Москву и становится студентом первого курса физфака МГУ. Имеющиеся источники говорят (с его слов), что сделал это он полностью самостоятельно, без протекции каких-либо инстанций.

«Инстанции», тем не менее, следили за его судьбой. В сентябре Лаврентьев встречается с И.Д.Сербиным , чиновником ЦК ВКП(б) и получателем его писем с Сахалина. По его поручению он описывает свое видение проблемы еще раз, обстоятельнее.

В самом начале следующего, 1951 года первокурсник Лаврентьев был вызван к министру измерительного приборостроения СССР Махневу , где познакомился с самим министром и своим рецензентом А.Д.Сахаровым. Надо заметить, что возглавляемое Махневым ведомство имело к измерительным приборам довольно отвлеченное отношение, его действительным назначением было обеспечение ядерной программы СССР. Сам Махнев был секретарем Специального комитета, председателем которого был всемогущий в ту пору Л.П.Берия . С ним наш студент познакомился через несколько дней. Сахаров снова присутствовал при встрече, но о его роли в ней практически ничего сказать нельзя.

По воспоминаниям О.А.Лаврентьева, он готовился рассказывать сановному начальнику о бомбе и реакторе, но Берию это как будто не интересовало. Разговор велся о самом госте, его достижениях, планах и родственниках. «Это были смотрины, - резюмировал Олег Александрович. - Ему хотелось, как я понял, посмотреть на меня и, возможно, на Сахарова, что мы за люди. По-видимому, мнение оказалось благоприятным».

Следствием «смотрин» стали необычные для советского первокурсника поблажки. Олегу Лаврентьеву была установлена персональная стипендия, выделена для жилья отдельная комната (правда, маленькая - 14 кв. м.), два персональных преподавателя по физике и математике. Он был освобожден от платы за обучение. Наконец, была организована доставка необходимой литературы.

Вскоре состоялось знакомство с техническими руководителями советской атомной программы Б.Л.Ванниковым , Н.И.Павловым и И.В.Курчатовым . Вчерашний сержант, за годы службы не видевший ни одного генерала даже издалека, теперь на равных беседовал сразу с двумя: Ванниковым и Павловым. Правда, вопросы задавал в основном Курчатов.

Очень похоже, что предложениям Лаврентьева после его знакомства с Берией послушно придавалось даже слишком большое значение. В Архиве Президента РФ лежит адресованное Берии и подписанное вышеупомянутыми тремя собеседниками предложение о создании «небольшой теоретической группы» для обсчета идей О. Лаврентьева. Была ли такая группа создана и если да, то с каким результатом, сейчас неизвестно.

Вход в Курчатовский инстутут. Современная фотография. / © Викимедиа

В мае наш герой получил пропуск в ЛИПАН - Лабораторию измерительных приборов Академии наук, ныне Институт им. Курчатова. Странное тогдашнее название тоже было данью всеобщей секретности. Олег был назначен практикантом в отдел электроаппаратуры с задачей ознакомиться с идущей уже работой над МТР (магнитным термоядерным реактором). Как и в университете, к особому гостю был прикреплен персональный гид, «специалист по газовым разрядам тов. Андрианов» - так гласит докладная записка на имя Берии.

Сотрудничество с ЛИПАНом уже тогда вышло достаточно напряженным. Там проектировали установку с удержанием плазмы магнитным полем, впоследствии ставшую токамаком, а Лаврентьев хотел работать над доработанной версией электромагнитной ловушки, восходившей к его сахалинским мыслям. В конце 1951 года в ЛИПАНе состоялось детальное обсуждение его проекта. Оппоненты не нашли в нем ошибок и в целом признали работу верной, но реализовывать отказались, решив «сосредоточить силы на главном направлении». В 1952 году Лаврентьев готовит новый проект с уточненными параметрами плазмы.

Надо отметить, что Лаврентьев в тот момент думал, что его предложение по реактору тоже запоздало, и коллеги из ЛИПАНа разрабатывают целиком собственную идею, пришедшую им в головы независимо и раньше. О том, что сами коллеги придерживаются иного мнения, он узнал существенно позднее.

Ваш благодетель умер

26 июня 1953 года был арестован и вскоре расстрелян Берия. Сейчас можно только догадываться, имел ли он какие-то конкретные планы в отношении Олега Лаврентьева, но на его судьбе утрата столь влиятельного покровителя сказалась весьма ощутимо.

В университете мне не только перестали давать повышенную стипендию, но и «вывернули» плату за обучение за прошедший год, фактически оставив без средств к существованию, - рассказывал много лет спустя Олег Александрович. - Я пробился на прием к новому декану и в полной растерянности услышал: «Ваш благодетель умер. Чего же вы хотите?» Одновременно в ЛИПАНе был снят допуск, и я лишился постоянного пропуска в лабораторию, где по существующей ранее договоренности должен был проходить преддипломную практику, а впоследствии и работать. Если стипендию потом все-таки восстановили, то допуск в институт я так и не получил.

После университета Лаврентьева так и не взяли на работу в ЛИПАН, единственное в СССР место, где тогда занимались термоядерным синтезом. Сейчас невозможно, да и бессмысленно, пытаться понять, виновата ли в этом репутация «человека Берии», какие-то личные сложности или что-то еще.

Наш герой отправился в Харьков, где в ХФТИ как раз создавался отдел плазменных исследований. Там он и сосредоточился над своей любимой темой - электромагнитными ловушками плазмы. В 1958 году была пущена установка С1, наконец-то показавшая жизнеспособность идеи. Следующее десятилетие ознаменовалось строительством еще нескольких установок, после чего идеи Лаврентьева стали восприниматься в научном мире всерьез.

Харьковский физико-технический институт, современное фото

В семидесятых предполагалось построить и запустить большую установку «Юпитер», которая должны была стать наконец полноценным конкурентом токамаков и стеллараторов, построенным на других принципах. К сожалению, пока новинка проектировалась, обстановка вокруг изменилась. В целях экономии средств установка была уменьшена вдвое. Потребовалась переделка проекта и расчетов. К моменту ее завершения технику пришлось уменьшать еще на треть - и, конечно, все снова пересчитывать. Запущенный наконец образец был вполне работоспособен, но до полноценных масштабов было, конечно, далеко.

Олег Александрович Лаврентьев до конца своих дней (его не стало в 2011 году) продолжал активную исследовательскую работу, много публиковался и, в общем, вполне состоялся как ученый. Но главная идея его жизни пока так и осталась непроверенной.

Разрушительную силу которого при взрыве никому не остановить. Какая самая мощная бомба в мире? Чтобы ответить на этот вопрос, нужно разобраться в особенностях тех или иных бомб.

Что такое бомба?

Атомные электростанции работают по принципу высвобождения и сковывания ядерной энергии. Этот процесс обязательно контролируется. Высвобожденная энергия переходит в электричество. Атомная бомба приводит к тому, что происходит цепная реакция, которая совершенно не поддается контролю, а огромное количество освобожденной энергии наносит чудовищные разрушения. Уран и плутоний - не такие уж и безобидные элементы таблицы Менделеева, они приводят к глобальным катастрофам.

Атомная бомба

Чтобы понять, какая самая мощная атомная бомба на планете, узнаем обо всем подробнее. Водородные и атомные бомбы относятся к атомной энергетике. Если объединить два кусочка урана, но каждый будет иметь массу ниже критической, то этот «союз» намного превысит критическую массу. Каждый нейтрон участвует в цепной реакции, потому что расщепляет ядро и высвобождает еще 2-3 нейтрона, которые вызывают новые реакции распада.

Нейтронная сила совершенно не поддается контролю человека. Меньше чем за секунду сотни миллиардов новообразованных распадов не только освобождают огромное количество энергии, но и становятся источниками сильнейшей радиации. Этот радиоактивный дождь покрывает толстым слоем землю, поля, растения и все живое. Если говорить о бедствиях в Хиросиме, то можно заметить, что 1 грамм стал причиной гибели 200 тысяч человек.

Принцип работы и преимущества вакуумной бомбы

Считается, что вакуумная бомба, созданная по новейшим технологиям, может конкурировать с ядерной. Дело в том, что вместо тротила здесь используется газовое вещество, которое мощнее в несколько десятков раз. Авиационная бомба повышенной мощности - самая мощная вакуумная бомба в мире, которая не относится к ядерному оружию. Она может уничтожить противника, но при этом не пострадают дома и техника, а продуктов распада не будет.

Каков принцип ее работы? Сразу после сбрасывания с бомбардировщика срабатывает детонатор на некотором расстоянии от земли. Корпус разрушается и распыляется огромнейшее облако. При смешивании с кислородом оно начинает проникать куда угодно - в дома, бункеры, убежища. Выгорание кислорода образует везде вакуум. При сбрасывании этой бомбы получается сверхзвуковая волна и образуется очень высокая температура.

Отличие вакуумной бомбы американской от российской

Различия состоят в том, что последняя может уничтожать противника, находящегося даже в бункере, при помощи соответствующей боеголовки. Во время взрыва в воздухе боеголовка падает и сильно ударяется об землю, зарываясь на глубину до 30 метров. После взрыва образуется облако, которое, увеличиваясь в размерах, может проникать в убежища и уже там взрываться. Американские же боеголовки начиняются обыкновенным тротилом, поэтому разрушают здания. Вакуумная бомба уничтожает определенный объект, так как обладает меньшим радиусом. Неважно, какая бомба самая мощная - любая из них наносит несопоставимый ни с чем разрушительный удар, поражающий все живое.

Водородная бомба

Водородная бомба - еще одно страшное ядерное оружие. Соединение урана и плутония порождает не только энергию, но и температуру, которая повышается до миллиона градусов. Изотопы водорода соединяются в гелиевые ядра, что создает источник колоссальной энергии. Водородная бомба самая мощная - это неоспоримый факт. Достаточно всего лишь представить, что взрыв ее равен взрывам 3000 атомных бомб в Хиросиме. Как в США, так и в бывшем СССР можно насчитать 40 тысяч бомб различной мощности - ядерных и водородных.

Взрыв такого боеприпаса сопоставим с процессами, которые наблюдается внутри Солнца и звезд. Быстрые нейтроны с огромной скоростью расщепляют урановые оболочки самой бомбы. Выделяется не только тепло, но и радиоактивные осадки. Насчитывают до 200 изотопов. Производство такого ядерного оружия дешевле, чем атомного, а его действие может быть усилено во сколько угодно раз. Это самая мощная взорванная бомба, которую испытали в Советском Союзе 12 августа 1953 года.

Последствия взрыва

Результат взрыва водородной бомбы носит тройной характер. Самое первое, что происходит - наблюдается мощнейшая взрывная волна. Ее мощность зависит от высоты проводимого взрыва и типа местности, а также степени прозрачности воздуха. Могут образовываться большие огненные ураганы, которые не успокаиваются в течение нескольких часов. И все же вторичное и наиболее опасное последствие, которое может вызвать самая мощная термоядерная бомба - это радиоактивное излучение и заражение окружающей местности на длительное время.

Радиоактивные остатки после взрыва водородной бомбы

При взрыве огненный шар содержит в себе множество очень маленьких радиоактивных частиц, которые задерживаются в атмосферном слое земли и надолго там остаются. При соприкосновении с землей этот огненный шар создает раскаленную пыль, состоящую из частиц распада. Сначала оседает крупная, а затем более легкая, которая при помощи ветра разносится на сотни километров. Эти частицы можно разглядеть невооруженным глазом, например, такую пыль можно заметить на снегу. Она приводит к летальному исходу, если кто-либо окажется поблизости. Самые мелкие частицы могут много лет находиться в атмосфере и так «путешествовать», несколько раз облетая всю планету. Их радиоактивное излучение станет более слабым к тому моменту, когда они выпадут в виде осадков.

Ее взрыв способен в считаные секунды стереть Москву с лица земли. Центр города запросто бы испарился в прямом смысле слова, а все остальное могло бы превратиться в мельчайший щебень. Самая мощная бомба в мире стерла бы и Нью-Йорк со всеми небоскребами. После него остался бы двадцатикилометровый расплавленный гладкий кратер. При таком взрыве не получилось бы спастись, спустившись в метро. Вся территория в радиусе 700 километров получила бы разрушения и заразилась радиоактивными частицами.

Взрыв «Царь-бомбы» - быть или не быть?

Летом 1961 года ученые решили провести испытание и понаблюдать за взрывом. Самая мощная бомба в мире должна была взорваться на полигоне, расположенном на самом севере России. Огромная площадь полигона занимает всю территорию острова Новая Земля. Масштаб поражения должен был составить 1000 километров. При взрыве зараженными могли остаться такие промышленные центры, как Воркута, Дудинка и Норильск. Ученые, осмыслив масштабы бедствия, взялись за головы и поняли, что испытание отменяется.

Места для испытания знаменитой и невероятно мощной бомбы не было нигде на планете, оставалась только Антарктида. Но на ледяном континенте тоже не получилось провести взрыв, так как территория считается международной и получить разрешение на подобные испытания просто нереально. Пришлось снизить заряд этой бомбы в 2 раза. Бомбу все-таки взрывали 30 октября 1961 года в том же месте - на острове Новая Земля (на высоте около 4 километров). При взрыве наблюдался чудовищный огромный атомный гриб, который поднимался ввысь на 67 километров, а ударная волна трижды обогнула планету. Кстати, в музее «Арзамас-16», в городе Саров, можно на экскурсии посмотреть кинохронику взрыва, хотя утверждают, что это зрелище не для слабонервных.

В конце 30-х годов прошлого столетия в Европе уже были открыты закономерности деления и распада а водородная бомба из разряда фантастики перешла в реальную действительность. История освоения ядерной энергии интересна и до сих пор представляет собой захватывающее соревнование между научным потенциалом стран: нацистской Германии, СССР и США. Самая мощная бомба, владеть которой мечтало любое государство, была не только оружием, но и мощным политическим инструментом. Та страна, которая имела ее в своем арсенале, фактически становилась всемогущей и могла диктовать свои правила.

Водородная бомба имеет свою историю создания, в основу которой легли физические законы, а именно термоядерный процесс. Изначально ее неправильно назвали атомной, а виной тому была неграмотность. В ученый Бете, впоследствии ставший лауреатом Нобелевской премии, работал над искусственным источником энергии - делением урана. Это время было пиком научной деятельности многих физиков, а в их среде было такое мнение, что научные секреты не должны существовать вовсе, так как изначально законы науки интернациональны.

Теоретически водородная бомба была изобретена, теперь же с помощью конструкторов она должна была приобрести технические формы. Оставалось только упаковать ее в определенную оболочку и испытать на мощность. Есть два ученых, имена которых навсегда будут связаны с созданием этого мощного оружия: в США это - Эдвард Теллер, а в СССР - Андрей Сахаров.

В США термоядерной проблемой еще в 1942 году начал заниматься физик По распоряжению Гарри Трумэна, на то время президента США, над этой проблемой работали лучшие ученые страны, они создавали принципиально новое оружие уничтожения. Причем, заказ правительства был на бомбу мощностью не меньше миллиона тонн тротила. Водородная бомба Теллером была создана и показала человечеству в Хиросиме и Нагасаки свои безграничные, но уничтожающие способности.

На Хиросиму была сброшена бомба, которая весила 4,5 тонны с содержанием урана 100 кг. Этот взрыв соответствовал почти 12 500 тоннам тротила. Японский город Нагасаки стерла плутониевая бомба такой же массы, но эквивалентная уже 20 000 тонн тротила.

Будущий советский академик А. Сахаров в 1948 году, основываясь на своих исследованиях, представил конструкцию водородной бомбы под наименованием РДС-6. Его исследования пошли по двум ветвям: первая имела название «слойка» (РДС-6с), а ее особенностью был атомный заряд, который окружался слоями тяжелых и легких элементов. Вторая ветвь - «труба» или (РДС-6т), в ней плутониевая бомба находилась в жидком дейтерии. Впоследствии было сделано очень важное открытие, доказавшее, что направление «труба» является тупиковым.

Принцип действия водородной бомбы состоит в следующем: сначала взрывается внутри оболочки HB заряд, который является инициатором термоядерной реакции, как результат возникает нейтронная вспышка. При этом процесс сопровождается высвобождением высокой температуры, которая нужна для дальнейшего Нейтроны начинают бомбардировку вкладыша из дейтерида лития, а он в свою очередь под непосредственным действием нейтронов расщепляется на два элемента: тритий и гелий. Используемый атомный запал образует нужные для протекания синтеза составляющие в уже приведенной в действие бомбе. Вот такой непростой принцип действия водородной бомбы. После этого предварительного действия начинается непосредственно термоядерная реакция в смеси дейтерия с тритием. В это время в бомбе все больше увеличивается температура, а в синтезе участвует все большее количество водорода. Если следить за временем протекания этих реакций, то скорость их действия можно охарактеризовать, как мгновенную.

Впоследствии ученые стали применять не синтез ядер, а их деление. При делении одной тонны урана создается энергия, эквивалентная 18 Мт. Такая бомба обладает колоссальной мощностью. Самая мощная бомба, созданная человечеством, принадлежала СССР. Она даже попала в книгу рекордов Гиннесса. Ее взрывная волна приравнивалась к 57 (примерно) мегатоннам вещества тротил. Взорвана она была в 1961 году в районе архипелага Новая Земля.