Формы эмпирического и теоретического познания. Уровни научного исследования. методы и формы эмпирического по­знания. Что значит эмпирическое познание

28. Эмпирический и теоретический уровень научного познания. Их основные формы и методы

Научное познание имеет два уровня: эмпирический и теоретический.

- это непосредственное чувственное исследование реально существующих и доступных опыту объектов .

На эмпирическом уровне осуществляются следующие исследовательские процессы:

1. Формирование эмпирической базы исследования :

Накопление информации об исследуемых объектах и явлениях;

Определение сферы научных фактов в составе накопленной информации;

Введение физических величин, их измерение и систематизация научных фактов в виде таблиц, схем, графиков и т. п.;

2. Классификация и теоретическое обобщение сведений о полученных научных фактах:

Введение понятий и обозначений;

Выявление закономерностей в связях и отношениях объектов познания;

Выявление общих признаков у объектов познания и сведение их в общие классы по этим признакам;

Первичное формулирование исходных теоретических положений.

Таким образом, эмпирический уровень научного познания содержит в своем составе два компонента:

1. Чувственный опыт.

2. Первичное теоретическое осмысление чувственного опыта.

Основой содержания эмпирического научного познания , полученного в чувственном опыте, являются научные факты . Если любой факт, как таковой - это достоверное, единичное, самостоятельное событие или явление, то научный факт - это факт, твердо установленный, надежно подтвержденный и правильно описанный принятыми в науке способами.

Выявленный и зафиксированный принятыми в науке способами, научный факт, обладает принудительной силой для системы научного знания, то есть подчиняет себе логику достоверности исследования.

Таким образом, на эмпирическом уровне научного познания формируется эмпирическая база исследования, чья достоверность образуется принудительной силой научных фактов.

Эмпирический уровень научного познания использует следующие методы :

1. Наблюдение. Научное наблюдение - это система мероприятий по чувственному сбору сведений о свойствах исследуемого объекта познания. Основное методологическое условие правильного научного наблюдения - это независимость результатов наблюдения от условий и процесса наблюдения. Выполнение этого условия обеспечивает как объективность наблюдения, так и реализацию его основной функции - сбора эмпирических данных в их естественном, природном состоянии.

Наблюдения по способу проведения делятся на:

- непосредственные (сведения получаются непосредственно органами чувств);

- косвенные (органы чувств человека замещены техническими средствами).

2. Измерение . Научное наблюдение всегда сопровождается измерением. Измерение - это сравнение какой-либо физической величины объекта познания с эталонной единицей этой величины. Измерение является признаком научной деятельности, поскольку любое исследование становится научным только тогда, когда в нём происходят измерения.

В зависимости от характера поведения тех или иных свойств объекта во времени, измерения делятся на:

- статические , в которых определяют постоянные во времени величины (внешние размеры тел, вес, твердость, постоянное давление, удельная теплоемкость, плотность и т. п.);

- динамические , в которых находят меняющиеся во времени величины (амплитуды колебаний, перепады давлений, температурные изменения, изменения количества, насыщенности, скорость, показатели роста и т. д.).

По способу получения результатов измерения делятся на:

- прямые (непосредственное измерение величины измерительным прибором);

- косвенные (путем математического расчета величины из её известных соотношений с какой-либо величиной, получаемой путем прямых измерений).

Назначение измерения состоит в том, чтобы выразить свойства объекта в количественных характеристиках, перевести их в языковую форму и сделать основой математического, графического или логического описания.

3. Описание . Результаты измерения используются для научного описания объекта познания. Научное описание - это достоверная и точная картина объекта познания, отображенная средствами естественного или искусственного языка.

Назначение описания состоит в том, чтобы перевести чувственную информацию в удобную для рациональной обработки форму: в понятия, в знаки, в схемы, в рисунки, в графики, в цифры и т. д.

4. Эксперимент . Эксперимент - это исследовательское воздействие на объект познания для выявления новых параметров его известных свойств или для выявления его новых, ранее неизвестных свойств. Эксперимент отличается от наблюдения тем, что экспериментатор, в отличие от наблюдателя, вмешивается в естественное состояние объекта познания, активно воздействует и на него самого, и на процессы, в которых этот объект участвует.

По характеру поставленных целей эксперименты подразделяются на:

- исследовательские , которые направлены на обнаружение у объекта новых, неизвестных свойств;

- проверочные , которые служат для проверки или подтверждения тех или иных теоретических построений.

По методикам проведения и задачам на получение результата, эксперименты делятся на:

- качественные , которые носят поисковый характер, ставят задачу выявить само наличие или отсутствие тех или иных теоретически предполагаемых явлений, и не нацелены на получение количественных данных;

- количественные , которые направлены на получение точных количественных данных об объекте познания или о процессах, в которых он участвует.

После завершения эмпирического познания начинается теоретический уровень научного познания.

ТЕОРЕТИЧЕСКИЙ УРОВЕНЬ НАУЧНОГО ПОЗНАНИЯ - это обработка мышлением эмпирических данных с помощью абстрактной работы мысли.

Таким образом, теоретический уровень научного познания характеризуется преобладанием рационального момента - понятий, умозаключений, идей, теорий, законов, категорий, принципов, посылок, заключений, выводов, и т. д.

Преобладание рационального момента в теоретическом познании достигается абстрагированием - отвлечением сознания от чувственно воспринимаемых конкретных объектов и переходом к абстрактным представлениям .

Абстрактные представления подразделяются на :

1. Абстракции отождествления - группировка множества объектов познания в отдельные виды, роды, классы, отряды и т. д., по принципу тождества их каких-либо наиболее существенных признаков (минералы, млекопитающие, сложноцветные, хордовые, окислы, белковые, взрывчатые, жидкости, аморфные, субатомные и т. д.).

Абстракции отождествления позволяют открыть наиболее общие и существенные формы взаимодействий и связей между объектами познания, и переходить затем от них к частным проявлениям, видоизменениям и вариантам, раскрывая всю полноту процессов, происходящих между объектами материального мира.

Отвлекаясь от несущественных свойств объектов, абстракция отождествления позволяет перевести конкретные эмпирические данные в идеализированную и упрощенную для целей познания систему абстрактных объектов, способных участвовать в сложных операциях мышления.

2. Изолирующие абстракции . В отличие от абстракций отождествления, эти абстракции выделяют в отдельные группы не объекты познания, а их какие-либо общие свойства или признаки (твердость, электропроводность, растворимость, ударная вязкость, температура плавления, кипения, замерзания, гигроскопичность и т. д.).

Изолирующие абстракции также позволяют идеализировать в целях познания эмпирический опыт и выразить его в понятиях, способных участвовать в сложных операциях мышления.

Таким образом, переход к абстракциям позволяет теоретическому познанию предоставлять мышлению обобщенный абстрактный материал для получения научного знания обо всём многообразии реальных процессов и объектов материального мира, что невозможно было бы сделать, ограничиваясь только эмпирическим познанием, без отвлечения от конкретно каждого из этих неисчислимых объектов или процессов.

В результате абстрагирования становятся возможными следующие МЕТОДЫ ТЕОРЕТИЧЕСКОГО ПОЗНАНИЯ:

1. Идеализация . Идеализация - это мысленное создание неосуществимых в реальности объектов и явлений для упрощения процесса исследования и построения научных теорий.

Например: понятия точка или материальная точка, которые применяются для обозначения объектов, не имеющих размеров; введение различных условных понятий, таких, как: идеально ровная поверхность, идеальный газ, абсолютно черное тело, абсолютно твердое тело, абсолютная плотность, инерциальная система отсчета и т. д., для иллюстрации научных идей; орбита электрона в атоме, чистая формула химического вещества без примесей и другие невозможные в реальности понятия, создаваемые для объяснения или формулирования научных теорий.

Идеализации целесообразны:

Когда необходимо упростить исследуемый объект или явление для построения теории;

Когда необходимо исключить из рассмотрения те свойства и связи объекта, которые не влияют на суть планируемых результатов исследования;

Когда реальная сложность объекта исследования превышает существующие научные возможности его анализа;

Когда реальная сложность объектов исследования делает невыполнимым или затрудняет их научное описание;

Таким образом, в теоретическом познании всегда происходит замена реального явления или объекта действительности его упрощенной моделью.

То есть метод идеализации в научном познании неразрывно связан с методом моделирования.

2. Моделирование . Теоретическое моделирование - это замещение реального объекта его аналогом , выполненным средствами языка или мысленно.

Основное условие моделирования состоит в том, чтобы создаваемая модель объекта познания за счет высокой степени своего соответствия реальности, позволяла:

Проводить неосуществимые в реальных условиях исследования объекта;

Проводить исследования объектов, в принципе недоступных в реальном опыте;

Проводить исследования объекта, непосредственно недоступного в данный момент;

Удешевлять исследование, сокращать его по времени, упрощать его технологию и т. д.;

Оптимизировать процесс построения реального объекта за счет обкатки процесса построения модели-прообраза.

Таким образом, теоретическое моделирование выполняет в теоретическом познании две функции: исследует моделируемый объект и разрабатывает программу действий по его материальному воплощению (построению).

3. Мысленный эксперимент . Мысленный эксперимент - это мысленное проведение над объектом познания неосуществимых в реальности исследовательских процедур.

Используется в качестве теоретического полигона для планируемых реальных исследовательских действий, или для исследования явлений или ситуаций, в которых реальный эксперимент вообще невозможен (например, квантовая физика, теория относительности, социальные, военные или экономические модели развития и т. д.).

4. Формализация . Формализация - это логическая организация содержания научного знания средствами искусственного языка специальной символики (знаков, формул).

Формализация позволяет:

Вывести теоретическое содержание исследования на уровень общенаучных символов (знаков, формул);

Перенести теоретические рассуждения исследования в плоскость оперирования символами (знаками, формулами);

Создать обобщенную знаково-символьную модель логической структуры исследуемых явлений и процессов;

Производить формальное исследование объекта познания, то есть осуществлять исследование путем оперирования знаками (формулами) без непосредственного обращения к объекту познания.

5. Анализ и синтез . Анализ - это мысленное разложение целого на составные части, преследующее цели:

Исследование структуры объекта познания;

Расчленение сложного целого на простые части;

Отделение существенного от несущественного в составе целого;

Классификация объектов, процессов или явлений;

Выделение этапов какого-либо процесса и т. д.

Основное назначение анализа - изучение частей как элементов целого.

Части, познанные и осмысленные по-новому, складываются в целое с помощью синтеза - способа рассуждения, конструирующего новое знание о целом из объединения его частей.

Таким образом, анализ и синтез - это неразделимо связанные мыслительные операции в составе процесса познания.

6. Индукция и дедукция .

Индукция - это процесс познания, в котором знание отдельных фактов в совокупности наводит на знание общего.

Дедукция - это процесс познания, в котором каждое следующее утверждение логически проистекает из предыдущего.

Вышеперечисленные методы научного познания позволяют раскрыть наиболее глубокие и существенные связи, закономерности и характеристики объектов познания, на базе чего возникают ФОРМЫ НАУЧНОГО ПОЗНАНИЯ - способы совокупного представления результатов исследования.

Основными формами научного познания являются:

1. Проблема - теоретический или практический научный вопрос, требующий решения . Правильно сформулированная проблема частично содержит в себе решение, поскольку формулируется исходя из актуальной возможности своего решения.

2. Гипотеза - предполагаемый способ возможного решения проблемы. Гипотеза может выступать не только в виде предположений научного характера, но и в виде развернутых концепции или теории.

3. Теория - целостная система понятий, описывающая и объясняющая какую либо область действительности.

Научная теория является высшей формой научного познания , проходящей в своем становлении стадии постановки проблемы и выдвижения гипотезы, которая опровергается или подтверждается использованием методов научного познания.

Основные термины

АБСТРАГИРОВАНИЕ - отвлечение сознания от чувственно воспринимаемых конкретных объектов и переход к абстрактным представлениям.

АНАЛИЗ (общее понятие) - мысленное разложение целого на составные части.

ГИПОТЕЗА - предполагаемый способ возможного решения научной проблемы.

ДЕДУКЦИЯ - процесс познания, в котором каждое следующее утверждение логически проистекает из предыдущего.

ЗНАК - условное обозначение, служащее для записи величин, понятий, отношений и т. д. действительности.

ИДЕАЛИЗАЦИЯ - мысленное создание неосуществимых в реальности объектов и явлений для упрощения процесса их исследования и построения научных теорий.

ИЗМЕРЕНИЕ - сравнение какой-либо физической величины объекта познания с эталонной единицей этой величины.

ИНДУКЦИЯ - процесс познания, в котором знание отдельных фактов в совокупности наводит на знание общего.

МЫСЛЕННЫЙ ЭКСПЕРИМЕНТ - мысленное проведение над объектом познания неосуществимых в реальности исследовательских процедур.

НАБЛЮДЕНИЕ - система мероприятий по чувственному сбору сведений о свойствах исследуемого объекта или явления.

НАУЧНОЕ ОПИСАНИЕ - достоверная и точная картина объекта познания, отображенная средствами естественного или искусственного языка.

НАУЧНЫЙ ФАКТ - факт, твердо установленный, надежно подтвержденный и правильно описанный принятыми в науке способами.

ПАРАМЕТР - величина, характеризующая какое-либо свойство объекта.

ПРОБЛЕМА - теоретический или практический научный вопрос, требующий решения.

СВОЙСТВО - внешнее проявление того или иного качества объекта, отличающее его от других объектов, или, наоборот, роднящее с ними.

СИМВОЛ - то же самое, что и знак.

СИНТЕЗ (процесс мышления) - способ рассуждения, конструирующий новое знание о целом из объединения его частей.

ТЕОРЕТИЧЕСКИЙ УРОВЕНЬ НАУЧНОГО ПОЗНАНИЯ - обработка мышлением эмпирических данных с помощью абстрактной работы мысли.

ТЕОРЕТИЧЕСКОЕ МОДЕЛИРОВАНИЕ - замещение реального объекта его аналогом, выполненным средствами языка или мысленно.

ТЕОРИЯ - целостная система понятий, описывающая и объясняющая какую либо область действительности.

ФАКТ - достоверное, единичное, самостоятельное событие или явление.

ФОРМА НАУЧНОГО ПОЗНАНИЯ - способ совокупного представления результатов научного исследования.

ФОРМАЛИЗАЦИЯ - логическая организация научного знания средствами искусственного языка или специальной символики (знаков, формул).

ЭКСПЕРИМЕНТ - исследовательское воздействие на объект познания для изучения ранее известных или для выявления новых, ранее неизвестных свойств.

ЭМПИРИЧЕСКИЙ УРОВЕНЬ НАУЧНОГО ПОЗНАНИЯ - непосредственное чувственное исследование реально существующих и доступных опыту объектов.

ЭМПИРИЯ - область отношений человека с действительностью, определяемая чувственным опытом.

Из книги Философия науки и техники автора Стёпин Вячеслав Семенович

Глава 8. Эмпирический и теоретический уровни научного исследования Научные знания представляют собой сложную развивающуюся систему, в которой по мере эволюции возникают все новые уровни организации. Они оказывают обратное воздействие на ранее сложившиеся уровни

Из книги Философия для аспирантов автора Кальной Игорь Иванович

5. ОСНОВНЫЕ МЕТОДЫ ПОЗНАНИЯ БЫТИЯ Проблема метода познания актуальна, ибо она не только определяет, но в некоторой мере и предопределяет путь познания. Путь познания имеет свою собственную эволюцию от «способа отражения» через «способ познания» к «научному методу». Эта

Из книги Философия: Учебник для вузов автора Миронов Владимир Васильевич

XII. ПОЗНАВАЕМОСТЬ МИРА. УРОВНИ, ФОРМЫ И МЕТОДЫ ПОЗНАНИЯ. ПОЗНАНИЕ МИРА КАК ОБЪЕКТ ФИЛОСОФСКОГО АНАЛИЗА 1. Два подхода к вопросу о познаваемости мира.2. Гносеологическое отношение в системе «субъект-объект», его основания.3. Активная роль субъекта познания.4. Логические и

Из книги Очерки организованной науки [Дореформенная орфография] автора

4. Логика, методология и методы научного познания Сознательная целенаправленная деятельность по формированию и развитию знания регулируется нормами и правилами, руководствуется определенными методами и приемами. Выявление и разработка таких норм, правил, методов и

Из книги Социология [Краткий курс] автора Исаев Борис Акимович

Основные понятия и методы.

Из книги Введение в философию автора Фролов Иван

12.2. Основные методы социологических исследований Социологи имеют в своем арсенале и используют все разнообразие методов научных исследований. Рассмотрим основные из них:1. Метод наблюдения.Наблюдение - это прямая регистрация фактов очевидцем. В отличие от обыденного

Из книги Социальная философия автора Крапивенский Соломон Элиазарович

5. Логика, методология и методы научного познания Сознательная целенаправленная деятельность по формированию и развитию знания регулируется нормами и правилами, руководствуется определенными методами и приемами. Выявление и разработка таких норм, правил, методов и

Из книги Шпаргалки по философии автора Нюхтилин Виктор

1. Эмпирический уровень социального познания Наблюдение в обществознании Огромные успехи теоретического знания, восхождение ко все более высоким уровням абстракции нисколько не умалили значимость и необходимость исходного эмпирического знания. Так обстоит дело и в

Из книги Вопросы социализма (сборник) автора Богданов Александр Александрович

2. Теоретический уровень социального познания Исторический и логический методы По большому счету эмпирический уровень научного познания сам по себе не достаточен для проникновения в сущность вещей, в том числе в закономерности функционирования и развития общества. На

Из книги Теория познания автора Этэрнус

26. Сущность познавательного процесса. Субъект и объект познания. Чувственный опыт и рациональное мышление: их основные формы и характер соотнесенности Познание - это процесс получения знания и формирования теоретического объяснения действительности.В познавательном

Из книги Очерки организационной науки автора Богданов Александр Александрович

Методы труда и методы познания Одна из основных задач нашей новой культуры - восстановить по всей линии связь труда и науки, связь, разорванную веками предшествующего развития.Решение задачи лежит в новом понимании науки, в новой точке зрения на нее:наука есть

Из книги Философия: конспект лекций автора Шевчук Денис Александрович

Обычные методы познания Обычными методами - будем считать методы, входящие в состав науки и философии (эксперимент, размышление, дедукция, и т.п.). Эти методы, в объективно- или субъективно-виртуальном Мире - хоть и стоят на ступеньку ниже специфических методов, но тоже

Из книги Логика для юристов: Учебник. автора Ивлев Юрий Васильевич

Основные понятия и методы

Из книги Логика: Учебник для студентов юридических вузов и факультетов автора Иванов Евгений Акимович

3. Средства и методы познания Разные науки, вполне понятно, обладают своими специфическими методами и средствами исследования. Философия, не отбрасывая такую специфику, тем не менее сосредоточивает свои усилия на анализе тех способов познания, которые являются общими

Из книги автора

§ 5. ИНДУКЦИЯ И ДЕДУКЦИЯ КАК МЕТОДЫ ПОЗНАНИЯ Вопрос об использовании индукции и дедукции в качестве методов познания обсуждался на протяжении всей истории философии. Под индукцией чаще всего понималось движение познания от фактов к утверждениям общего характера, а под

Из книги автора

Глава II. Формы развития научного знания Становление и развитие теории - сложнейший и длительный диалектический процесс, имеющий свое содержание и свои специфические формы.Содержание этого процесса составляет переход от незнания к знанию, от неполного и неточного

Научное познание можно разделить на два уровня: теоретический и эмпирический. Первый основывается на умозаключениях, второй - на опытах и взаимодействии с исследуемым объектом. Несмотря на различную природу, эти методы обладают одинаково большим значением для развития науки.

Эмпирические исследования

В основе эмпирического познания лежит непосредственное практическое взаимодействие исследователя и изучаемого им объекта. Оно состоит из экспериментов и наблюдений. Эмпирическое и теоретическое познание противоположны - в случае с теоретическими исследованиями человек обходится лишь собственными представлениями о предмете. Как правило, такой способ является уделом гуманитарных наук.

Эмпирические же исследования не могут обойтись без приборов и приборных установок. Это средства, связанные с организацией наблюдений и экспериментов, но помимо них есть еще и понятийные средства. Их используют в качестве специального научного языка. Он обладает сложной организацией. Эмпирическое и теоретическое познание ориентированы на исследование явлений и возникающих между ними зависимостей. Проводя эксперименты, человек может выявить объективный закон. Этому также способствует изучение явлений и их корреляции.

Эмпирические методы познания

Согласно научному представлению эмпирическое и теоретическое познание состоит из нескольких методов. Это совокупность шагов, необходимых для решения определенной задачи (в данном случае речь идет о выявлении неизвестных прежде закономерностей). Первый эмпирический метод — это наблюдение. Оно представляет собой целенаправленное исследование предметов, которое в первую очередь опирается на различные органы чувств (восприятия, ощущения, представления).

На своем начальном этапе наблюдение дает представление о внешних характеристиках объекта познания. Однако конечная цель этого заключается в определении более глубоких и внутренних свойств предмета. Распространенное заблуждение заключается в идее о том, что научное наблюдение представляет собой пассивное далеко не так.

Наблюдение

Эмпирическое наблюдение отличается детальным характером. Оно может быть как непосредственным, так и опосредованным разными техническими устройствами и приборами (например, фотокамерой, телескопом, микроскопом и т. д.). По мере развития науки наблюдение становится все более комплексным и сложным. У этого метода есть несколько исключительных качеств: объективность, определенность и однозначность замысла. При использовании приборов дополнительную роль играет расшифровка их показаний.

В социальных и гуманитарных науках эмпирическое и теоретическое познание приживается неоднородно. Наблюдение в этих дисциплинах отличается особенной сложностью. Оно становится зависимым от личности исследователя, его принципов и жизненных установок, а также степени заинтересованности в предмете.

Наблюдение не может осуществляться без определенной концепции или идеи. Оно должно основываться на некой гипотезе и регистрировать определенные факты (при этом показательными будут только связанные между собой и репрезентативные факты).

Теоретические и эмпирические исследования отличаются друг от друга в деталях. Например, у наблюдения есть свои конкретные функции, которые не характерны для других методов познания. В первую очередь это обеспечение человека информацией, без которой невозможно дальнейшее исследование и выдвижение гипотез. Наблюдение - это топливо, на котором работает мышление. Без новых фактов и впечатлений не будет и новых знаний. Кроме того, именно с помощью наблюдения можно сопоставить и проверить истинность результатов предварительных теоретических исследований.

Эксперимент

Разные между собой теоретические и эмпирические методы познания отличаются еще и степенью своего вмешательства в изучаемый процесс. Человек может наблюдать за ним строго со стороны, а может проанализировать его свойства на собственном опыте. Эту функцию осуществляет один из эмпирических методов познания - эксперимент. По важности и вкладу в итоговый результат исследований он ничуть не уступает наблюдению.

Эксперимент — это не только целенаправленное и активное вмешательство человека в протекание исследуемого процесса, но и его изменение, а также воспроизведение в специально подготовленных условиях. Данный метод познания требует гораздо больше усилий, чем наблюдение. Во время эксперимента объект изучения изолируется от любого постороннего влияния. Создается чистая и незамутненная среда. Условия эксперимента полностью задаются и контролируются. Поэтому этот метод, с одной стороны, соответствует естественным законам природы, а с другой стороны, отличается искусственной, определенной человеком сущностью.

Структура эксперимента

Все теоретические и эмпирические методы имеют определенную идейную нагрузку. Не является исключением и эксперимент, который осуществляется в несколько стадий. В первую очередь происходят планирование и пошаговое построение (определяются цель, средства, тип и т. д.). Затем наступает этап осуществления эксперимента. При этом он происходит под совершенным контролем человека. По завершении активной фазы наступает очередь интерпретации результатов.

И эмпирическое, и теоретическое познание отличается определенной структурой. Для того чтобы состоялся эксперимент, требуются сами экспериментаторы, объект эксперимента, приборы и другое необходимое оборудование, методика и гипотеза, которая подтверждается или опровергается.

Приборы и установки

С каждым годом научные исследования становятся все сложнее. Им требуется все более современная техника, которая позволяет изучать то, что недоступно простым человеческим органам чувств. Если раньше ученые ограничивались собственным зрением и слухом, то теперь в их распоряжении есть невиданные прежде экспериментальные установки.

В ходе использования прибора он может оказать негативное воздействие на изучаемый объект. По этой причине результат эксперимента иногда расходится с его первоначальными целями. Некоторые исследователи пытаются нарочно достичь таких результатов. В науке подобный процесс называется рандомизацией. Если эксперимент принимает случайный характер, то его последствия становятся дополнительным объектом анализа. Возможность рандомизации — это еще одна черта, которой отличается эмпирическое и теоретическое познание.

Сравнение, описание и измерение

Сравнение - третий эмпирический метод познания. Эта операция позволяет выявлять различия и сходства объектов. Эмпирический, теоретический анализ не может осуществляться без глубоких знаний о предмете. В свою очередь, многие факты начинают играть новыми красками, после того как исследователь сопоставляет их с другой известной ему фактурой. Сравнение объектов проводится в рамках признаков, существенных для конкретного эксперимента. При этом предметы, которые сопоставляются по одной черте, могут быть несравнимыми по другим своим характеристикам. Данный эмпирический прием основывается на аналогии. Он лежит в основе важного для науки

Методы эмпирического и теоретического познания могут комбинироваться между собой. Но почти никогда исследование не обходится без описания. Эта познавательная операция фиксирует результаты ранее проведенного опыта. Для описания используются научные системы обозначения: графики, схемы, рисунки, диаграммы, таблицы и т. д.

Последний эмпирический метод познания - измерение. Оно осуществляется посредством специальных средств. Измерение необходимо для определения числового значения искомой измеряемой величины. Такая операция обязательно проводится согласно принятым в науке строгим алгоритмам и правилам.

Теоретическое познание

В науке теоретическое и эмпирическое знание имеет разные фундаментальные опоры. В первом случае это отстраненное использование рациональных методов и логических процедур, а во втором - прямое взаимодействие с объектом. Теоретическое познание использует интеллектуальные абстракции. Одним из важнейших его методов является формализация - отображение знания в символическом и знаковом виде.

На первом этапе выражения мышления используется привычный человеческий язык. Он отличается сложностью и постоянной изменчивостью, из-за чего не может быть универсальным научным инструментом. Следующая ступень формализации связана с созданием формализованных (искусственных) языков. У них есть конкретное предназначение - строгое и точное выражение знания, которого нельзя достичь с помощью естественной речи. Такая система символов может принимать формат формул. Он очень популярен в математике и других где нельзя обойтись без цифр.

С помощью символики человек исключает неоднозначное понимание записи, делает ее короче и яснее для дальнейшего использования. Без быстроты и простоты в применении своих инструментов не может обойтись ни одно исследование, а значит, и все научное познание. Эмпирическое и теоретическое изучение одинаково нуждается в формализации, но именно на теоретическом уровне она принимает исключительно важное и фундаментальное значение.

Искусственный язык, созданный в узких научных рамках, становится универсальным средством обмена мыслей и коммуникации специалистов. В этом заключается принципиальная задача методологии и логики. Эти науки необходимы для передачи информации в понятном, систематизированном виде, избавленном от недостатков естественного языка.

Значение формализации

Формализация позволяет уточнять, анализировать, разъяснять и определять понятия. Эмпирический и теоретический уровни познания не могут обойтись без них, поэтому система искусственных символов всегда играла и будет играть большую роль в науке. Обыденные и выражаемые в разговорном языке понятия кажутся очевидными и ясными. Однако в силу своей неоднозначности и неопределенности они не подходят для научных исследований.

Особенно важна формализация при анализе предполагаемых доказательств. Последовательность формул, основанных на специализированных правилах, отличается необходимой для науки точностью и строгостью. Кроме того, формализация необходима для программирования, алгоритмизации и компьютеризации знаний.

Аксиоматический метод

Еще один метод теоретического исследования - аксиоматический метод. Он является удобным способом дедуктивного выражения научных гипотез. Теоретические и эмпирические науки невозможно представить без терминов. Очень часто они возникают благодаря построению аксиом. Например, в эвклидовой геометрии в свое время были сформулированы основополагающие термины угла, прямой, точки, плоскости и т. д.

В рамках теоретического познания ученые формулируют аксиомы - постулаты, которые не требуют доказательства и являются исходными утверждениями для дальнейшего построения теорий. Примером такого положения может послужить идея о том, что целое всегда больше части. С помощью аксиом строится система вывода новых терминов. Следуя правилам теоретического познания, ученый может из ограниченного числа постулатов получить уникальные теоремы. В то же время намного эффективнее применяется для преподавания и классификации, чем для открытия новых закономерностей.

Гипотетико-дедуктивный метод

Хотя теоретические, эмпирические научные методы отличаются друг от друга, они часто используются совместно. Примером такого применения является С помощью него строятся новые системы тесно переплетенных гипотез. Ни их основе выводятся новые утверждения, касающиеся эмпирических, экспериментально доказанных фактов. Метод выведения заключения из архаичных гипотез называется дедукцией. Этот термин многим знаком благодаря романам о Шерлоке Холмсе. Действительно, популярный литературный персонаж в своих расследованиях часто пользуется дедуктивным методом, с помощью которого из множества разрозненных фактов строит стройную картину преступления.

В науке действует такая же система. У подобного способа теоретического познания есть своя четкая структура. В первую очередь происходит ознакомление с фактурой. Затем выдвигаются предположения о закономерностях и причинах изучаемого явления. Для этого используются всевозможные логические приемы. Догадки оцениваются согласно своей вероятности (из этого вороха выбирается наиболее вероятная). Все гипотезы проверяются на непротиворечивость логике и совместимость с основными научными принципами (например, законами физиками). Из предположения выводятся следствия, которые затем проверяются путем эксперимента. Гипотетико-дедуктивный метод - это не столько способ нового открытия, сколько метод обоснования научных знаний. Этим теоретическим инструментом пользовались такие великие умы, как Ньютон и Галилей.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Структура научного знания

План

1. Научное знание как система

2. Формы и методы эмпирического знания

3. Теоретическое знание

4. Основания науки (идеалы и нормы исследования, научная картина мира, философские основания науки)

1. Научное знание как система

Научные знания представляют собой сложную развивающуюся систему, в которой по мере эволюции возникают все новые уровни организации. Элементы этой системы можно рассматривать в истории (древняя преднаука, античное и средневековое знание, классическая европейская наука, неклассическая и постнеклассическая наука) и в синхронном срезе - как множество научных дисциплин. В своих развитых формах наука предстает как дисциплинарно организованное знание, в котором отдельные отрасли - научные дисциплины (математика; естественнонаучные дисциплины - физика, химия, биология и др.; технические и социальные науки) выступают в качестве относительно автономных подсистем, взаимодействующих между собой.

Научные дисциплины возникают и развиваются неравномерно. В них формируются различные типы знаний, причем некоторые из наук уже прошли остаточно длительный путь теоретизации и сформировали образцы развитых и математизированных теорий, а другие только вступают на этот путь.

Специфика предмета каждой науки может привести и к тому, что определенные типы знаний, доминирующие в одной науке, могут играть подчиненную роль в другой. Они могут также представать в ней в трансформированном виде. Наконец, следует учитывать, что при возникновении развитых форм теоретического знания более ранние формы не исчезают, хотя и могут резко сузить сферу своего применения.

Сложной организацией обладает и каждая отдельная научная дисциплина. В ней можно обнаружить различные формы знания: эмпирические факты, законы, принципы, гипотезы, теории различного типа и степени общности и т.д.

Все эти формы могут быть отнесены к двум основным уровням организации знания: эмпирическому и теоретическому . Соответственно можно выделить два типа познавательных процедур, порождающих эти знания.

Достаточно четкая фиксация этих уровней была осуществлена уже в позитивизме 30-х годов, когда анализ языка науки выявил различие в смыслах эмпирических и теоретических терминов. Такое различие касается средств исследования. Например, в эмпирическом исследовании применяются особые понятийные средства. Они функционируют как особый язык, который часто называют эмпирическим языком науки . Он имеет сложную организацию, в которой взаимодействуют собственно эмпирические термины и термины теоретического языка.

Смыслом эмпирических терминов являются особые абстракции, которые можно было бы назвать эмпирическими объектами. Их следует отличать от объектов реальности. Эмпирические объекты - это абстракции, выделяющие в действительности некоторый набор свойств и отношений вещей. Реальному же объекту присуще бесконечное число признаков. Любой такой объект неисчерпаем в своих свойствах, связях и отношениях. Язык теоретического исследования, в свою очередь, отличается от языка эмпирических описаний. В качестве его основы выступают теоретические термины , смыслом которых являются теоретические идеальные объекты. Их также называют идеализированными объектами, абстрактными объектами или теоретическими конструктами. Это особые абстракции, которые являются логическими реконструкциями действительности. Ни одна теория не строится без применения таких объектов. Идеализированные теоретические объекты, в отличие от эмпирических объектов, наделены не только теми признаками, которые мы можем обнаружить в реальном взаимодействии объектов опыта, но и признаками, которых нет ни у одного реального объекта (например, материальная точка, абсолютно твердое тело, абсолютно черное тело и т.д.).

Эмпирический и теоретический типы познания различаются и по методам исследовательской деятельности . На эмпирическом уровне в качестве основных методов применяются реальный эксперимент и реальное наблюдение. Важную роль также играют методы эмпирического описания, ориентированные на максимально очищенную от субъективных наслоений объективную характеристику изучаемых явлений. Что же касается теоретического исследования, то здесь применяются особые методы: идеализация (метод построения идеализированного объекта); мысленный эксперимент с идеализированными объектами, который как бы замещает реальный эксперимент с реальными объектами; особые методы построения теории (восхождение от абстрактного к конкретному, аксиоматический и гипотетико-дедуктивный методы); методы логического и исторического исследования и др.

Все эти особенности средств и методов связаны со спецификой предмета эмпирического и теоретического исследования . На каждом из этих уровней исследователь может иметь дело с одной и той же объективной реальностью, но он изучает ее в разных предметных срезах, в разных аспектах, а поэтому ее видение, ее представление в знаниях будут даваться по-разному. Эмпирическое исследование в основе своей ориентировано на изучение явлений и зависимостей между ними. На этом уровне познания сущностные связи не выделяются еще в чистом виде, но они как бы высвечиваются в явлениях, проступают через их конкретную оболочку. На уровне же теоретического познания происходит выделение сущностных связей в чистом виде.

Эмпирическое и теоретическое знание отличаются по своему характеру. Так, эмпирическое знание выражается в форме эмпирических зависимостей , которые следует отличать от теоретического закона как особого знания, получаемого в результате теоретического исследования объектов.

Эмпирическая зависимость является результатом индуктивного обобщения опыта и представляет собой вероятностно-истинное знание. Теоретический же закон - это всегда знание достоверное. Получение такого знания требует особых исследовательских процедур.

Итак, эмпирический и теоретический уровни познания отличаются по предмету, средствам и методам исследования. Однако выделение и самостоятельное рассмотрение каждого из них представляет собой абстракцию. В реальности эти два слоя познания всегда взаимодействуют.

Критерии различения

Эмпирический уровень

Теоретический уровень

Выражает отдельные стороны явлений, фиксирует факты в протокольных предложениях

Выражает идеальные объекты-сущности реальных объектов

Реальное практическое взаимодействие с объектом - наблюдение, эксперимент. Методы эмпирического описания

Мысленный эксперимент, логические методы построения теории (восх. от абстр. к конктр., гипотетикодедукт. и т.д.)

Сущность

Характер знания

Эмпирические зависимости - научное описание предмета

Сущностные законы - научное объяснения

Таким образом, конечная цель естественнонаучного исследования состоит в том, чтобы найти законы (существенные связи объектов), которые управляют природными процессами, и на этой основе предсказать будущие возможные состояния этих процессов. Поэтому если исходить из глобальных целей познания, то предметом исследования нужно считать существенные связи и отношения природных объектов.

Но на разных уровнях познания такие связи изучаются по-разному. На теоретическом уровне они отображаются «в чистом виде» через систему соответствующих абстракций. На эмпирическом они изучаются по их проявлению в непосредственно наблюдаемых эффектах. Поэтому глобальная цель познания конкретизируется применительно к каждому из его уровней, и для исследователя важно четко различать предметы и результаты своей работы по отнесенности их к разным уровням научного изучения.

2. Формы и методы эмпирического знания

Эмпирическое знание образует, по меньшей мере, два подуровня: а) непосредственные наблюдения и эксперименты, результатом которых являются данные наблюдения; б) познавательные процедуры, посредством которых осуществляется переход от данных наблюдения к эмпирическим зависимостям и фактам.

Наблюдение - это направленное и организованное восприятие предмета.

Эксперимент - это практическое преобразование объекта или условий его существования с целью выявления исследуемых свойств. Наблюдение всегда входит в эксперимент.

Научное наблюдение носит деятельностный характер, предполагая не просто пассивное созерцание изучаемых процессов, а их особую предварительную организацию, обеспечивающую контроль за их протеканием. Это придает систематичность проводимым наблюдениям, когда исследователь знает, что, зачем, почему, как он наблюдает, предполагает результаты наблюдения. Что же касается случайных наблюдений, то для исследования их явно недостаточно. Случайные наблюдения могут стать импульсом к открытию тогда и только тогда, когда они переходят в систематические наблюдения.

Рассмотрим более детально связь наблюдения и эксперимента и недостаточность, с этой точки зрения, случайного наблюдения для научного познания.

Экспериментальная деятельность представляет собой специфическую форму природного взаимодействия (исследователь создает ситуацию, в которой выделенные объекты взаимодействуют между собой), и важнейшей чертой, определяющей эту специфику, является именно то, что взаимодействующие в эксперименте фрагменты природы всегда предстают как объекты с функционально выделенными свойствами. В развитых формах эксперимента такого рода объекты изготовляются искусственно. К ним относятся в первую очередь приборные установки, с помощью которых проводится экспериментальное исследование.

В таких экспериментах взаимодействующие фрагменты природы всегда выступают в функции приборных подсистем (в них испытываются и проявляются свойства изучаемого явления). Деятельность по «наделению» объектов природы функциями приборов часто называется созданием приборной ситуации. Причем сама приборная ситуация понимается как функционирование квазиприборных устройств, в системе которых испытывается некоторый фрагмент природы.

Выделение объекта исследования из совокупности всех возможных связей природы определяется целями познания и на разных уровнях последнего находит свое выражение в формулировке различных познавательных задач. На уровне экспериментального исследования такие задачи выступают как требование зафиксировать (измерить) наличие какого-либо характеристического свойства у испытуемого фрагмента природы. Однако важно сразу же уяснить, что объект исследования всегда представлен не отдельным элементом (вещью) внутри приборной ситуации, а всей ее структурой.

Что касается наблюдений, то раз они всегда целенаправленны и осуществляются как систематические наблюдения, их можно рассматривать как приборную ситуацию и как своеобразную квазиэкспериментальную практику.

Так, уже простое визуальное наблюдение за перемещением планеты на небесном своде предполагало, что наблюдатель должен предварительно выделить линию горизонта и метки на небесном своде (например, неподвижные звезды), на фоне которых наблюдается движение планеты. В основе этих операций по существу лежит представление о небесном своде как своеобразной проградуированной шкале, на которой фиксируется движение планеты как светящейся точки (неподвижные же звезды на небесном своде играют здесь роль средств наблюдения). Причем по мере проникновения в астрономическую науку математических методов градуировка небесного свода становится все более точной и удобной для проведения измерений. Уже в IV столетии до н.э. в египетской и вавилонской астрономии возникает зодиак, состоящий из 12 участков по 30 градусов, как стандартная шкала для описания движения Солнца и планет. Использование созвездий зодиака в функции шкалы делает их средствами наблюдения, своеобразным приборным устройством, позволяющим точно фиксировать изменение положения Солнца и планет.

Исследователь всегда выделяет в природе (или создает искусственно из ее материалов) некоторый набор объектов, фиксируя каждый из них по строго определенным признакам, и использует их в качестве средств эксперимента и наблюдения (приборных подсистем). Отношение последних к изучаемому в наблюдении объекту образует предметную структуру систематического наблюдения и экспериментальной деятельности. Эта структура характеризуется переходом от исходного состояния наблюдаемого объекта к конечному состоянию после взаимодействия объекта со средствами наблюдения (приборными подсистемами).

В экспериментальном исследовании цель познания сводится к тому, чтобы установить, как некоторое начальное состояние испытуемого фрагмента природы при фиксированных условиях порождает его конечное состояние. По отношению к такой локальной познавательной задаче вводится особый предмет изучения. Им является объект, изменение состояний которого прослеживается в опыте. В отличие от предмета познания в глобальном смысле его можно было бы называть предметом эмпирического знания. Между ним и предметом познания, единым как для эмпирического, так и для теоретического уровней, имеется глубокая внутренняя связь. Объекты эмпирического знания выступают в качестве своеобразного индикатора предмета исследования, общего как для эмпирического, так и для теоретического уровней.

Фиксация предмета исследования в рамках экспериментальной или квазиэкспериментальной деятельности является тем признаком, по которому можно отличить эксперимент и систематические наблюдения от случайных наблюдений. Последние суть наблюдения в условиях, когда приборная ситуация и изучаемый в опыте объект еще не выявлены. Регистрируется лишь конечный результат взаимодействия , который выступает в форме эффекта, доступного наблюдению. Однако неизвестно, какие именно объекты участвуют во взаимодействии и что вызывает наблюдаемый эффект. Структура ситуации наблюдения здесь не определена, а поэтому неизвестен и предмет исследования. Вот почему от случайных наблюдений сразу невозможен переход к более высоким уровням познания, минуя стадию систематических наблюдений. Случайное наблюдение способно обнаружить необычные явления, которые соответствуют новым характеристикам уже открытых объектов либо свойствам новых, еще не известных объектов. В этом смысле оно может служить началом научного открытия. Но для этого оно должно перерасти в систематические наблюдения, осуществляемые в рамках эксперимента или квазиэкспериментального исследования природы. Такой переход предполагает построение приборной ситуации и четкую фиксацию объекта, изменение состояний которого изучается в опыте.

Таким образом, путь от случайной регистрации нового явления к выяснению основных условий его возникновения и его природы проходит через серию наблюдений, которые отчетливо предстают в качестве квазиэкспериментальной деятельности.

Все это означает, что наблюдения не являются чистой эмпирией, а несут на себе отпечаток предшествующего развития теорий.

В результате применения наблюдений и экспериментов получаются научные данные , которые фиксируются в протокольных предложениях, которые формулируются как высказывания типа: «NN наблюдал, что после включения тока стрелка на приборе показывает цифру 5», «NN наблюдал в телескоп на участке неба (с координатами x, y) яркое световое пятнышко» и т.п. Такие высказывания содержат значительную долю субъективности. В результате была поставлена проблема выявления таких форм эмпирического знания, которые бы имели интерсубъективный статус, содержали бы объективную и достоверную информацию об изучаемых явлениях.

В ходе дискуссий было установлено, что такими знаниями выступают эмпирические факты . Именно они образуют эмпирический базис, на который опираются научные теории.

Факты фиксируются в языке науки в высказываниях типа: «сила тока в цепи зависит от сопротивления проводника»; «в созвездии Девы вспыхнула сверхновая звезда»; «более половины опрошенных в городе недовольны экологией городской среды» и т.п.

Переход от данных к фактам предполагает довольно сложные познавательные процедуры. Чтобы получить эмпирический факт, необходимо осуществить по меньшей мере два типа операций. Во-первых, рациональную обработку данных наблюдения и поиск в них устойчивого, инвариантного содержания. Для формирования факта необходимо сравнить между собой множество наблюдений, выделить в них повторяющиеся признаки и устранить случайные возмущения и погрешности, связанные с ошибками наблюдателя. Если в процессе наблюдения производится измерение, то данные наблюдения записываются в виде чисел. Тогда для получения эмпирического факта требуется определенная статистическая обработка результатов измерения, поиск среднестатистических величин в множестве этих данных. Если в процессе наблюдения применялись приборные установки, то наряду с протоколами наблюдения всегда составляется протокол контрольных испытаний приборов, в котором фиксируются их возможные систематические ошибки. При статистической обработке данных наблюдения эти ошибки также учитываются, они элиминируются из наблюдений в процессе поиска их инвариантного содержания.

Во-вторых, для установления факта необходимо истолкование выявляемого в наблюдениях инвариантного содержания. В процессе такого истолкования широко используются ранее полученные теоретические знания.

Но тогда возникает очень сложная проблема: получается, что для установления факта нужны теории, а они, как известно, должны проверяться фактами. Эта проблема решается только в том случае, если взаимодействие теории и факта рассматривается исторически. Безусловно, при установлении эмпирического факта использовались многие полученные ранее теоретические законы и положения. Для того, чтобы существование пульсаров было установлено в качестве научного факта, потребовалось принять законы Кеплера, законы термодинамики, законы распространения света - достоверные теоретические знания, ранее обоснованные другими фактами. Иначе говоря, в формировании факта участвуют теоретические знания, которые были ранее проверены независимо. Что же касается новых фактов, то они могут служить основой для развития новых теоретических идей и представлений. В свою очередь новые теории, превратившиеся в достоверное знание, могут использоваться в процедурах интерпретации при эмпирическом исследовании других областей действительности и формировании новых фактов.

Таким образом, при исследовании структуры эмпирического познания выясняется, что не существует чистой научной эмпирии, не содержащей в себе примесей теоретического.

3. Теоретическое знание

На теоретическом уровне познаниятоже можно выделить (с определенной долей условности) два подуровня. Первый из них образует частные теоретические модели и законы, которые выступают в качестве теорий, относящихся к достаточно ограниченной области явлений. Второй - составляют развитые научные теории, включающие частные теоретические законы в качестве следствий, выводимых из фундаментальных законов теории.

На каждом уровне теоретические знания организуются вокруг особой конструкции - теоретической модели и формулируемого относительно нее теоретического закона.

Рассмотрим вначале, как устроены теоретические модели.

В качестве их элементов выступают абстрактные объекты (теоретические конструкты), которые находятся в строго определенных связях и отношениях друг с другом. Теоретические законы непосредственно формулируются относительно абстрактных объектов теоретической модели.

Теоретические модели не являются чем-то внешним по отношению к теории. Они входят в ее состав. Их следует отличать от аналоговых моделей, которые служат средством построения теории, ее своеобразными строительными лесами, но целиком не включаются в созданную теорию.

Чтобы подчеркнуть особый статус теоретических моделей, относительно которых формулируются законы и которые обязательно входят в состав теории, назовем их теоретическими схемами . Они действительно являются схемами исследуемых в теории объектов и процессов, выражая их существенные связи.

Соответственно двум выделенным подуровням теоретического знания можно говорить о теоретических схемах в составе фундаментальной теории и в составе частных теорий.

В основании развитой теории можно выделить фундаментальную теоретическую схему, которая построена из небольшого набора базисных абстрактных объектов, конструктивно независимых друг от друга, и относительно которой формулируются фундаментальные теоретические законы.

Например, в ньютоновской механике ее основные законы формулируются относительно системы абстрактных объектов: «материальная точка», «сила», «инерциальная пространственно-временная система отсчета». Связи и отношения перечисленных объектов образуют теоретическую модель механического движения, изображающую механические процессы как перемещение материальной точки по континууму точек пространства инерциальной системы отсчета с течением времени и как изменение состояния движения материальной точки под действием силы.

Кроме фундаментальной теоретической схемы и фундаментальных законов в состав развитой теории входят частные теоретические схемы и законы. В механике это - теоретические схемы и законы колебания, вращения тел, соударения упругих тел, движение тела в поле центральных сил и т.п.

Когда эти частные теоретические схемы включены в состав теории, они подчинены фундаментальной, но по отношению друг к другу могут иметь независимый статус. Образующие их абстрактные объекты специфичны. Они могут быть сконструированы на основе абстрактных объектов фундаментальной теоретической схемы и выступать как их своеобразная модификация. Различию между фундаментальной и частными теоретическими схемами в составе развитой теории соответствует различие между ее фундаментальными законами и их следствиями.

Итак, строение развитой естественнонаучной теории можно изобразить как сложную, иерархически организованную систему теоретических схем и законов, где теоретические схемы образуют своеобразный внутренний скелет теории.

Функционирование теорий предполагает их применение к объяснению и предсказанию опытных фактов. Чтобы применить к опыту фундаментальные законы развитой теории, из них нужно получить следствия, сопоставимые с результатами опыта. Вывод таких следствий характеризуется как развертывание теории.

Долгое время в логико-методологической литературе доминировало представление о теории как гипотетико-дедуктивной системе. Структура теории рассматривалась по аналогии со структурой формализованной математической теории и изображалась как иерархическая система высказываний, где из базисных утверждений верхних ярусов строго логически выводятся высказывания нижних ярусов вплоть до высказываний, непосредственно сравнимых с опытными фактами. Правда, затем эта версия была смягчена и несколько модифицирована, поскольку выяснилось, что в процессе вывода приходится уточнять некоторые положения теории, вводить в нее дополнительные допущения.

Иерархической структуре высказываний соответствует иерархия взаимосвязанных абстрактных объектов. Связи же этих объектов образуют теоретические схемы различного уровня. И тогда развертывание теории предстает не только как оперирование высказываниями, но и как мысленные эксперименты с абстрактными объектами теоретических схем.

В свете сказанного можно уточнить представление о теории как математическом аппарате и его интерпретации.

В развитых в теоретическом отношении дисциплинах, применяющих количественные методы исследования (таких, как физика), законы теории формулируются на языке математики. Признаки абстрактных объектов, образующих теоретическую модель, выражаются в форме физических величин, а отношения между этими признаками - в форме связей между величинами, входящими в уравнения. Применяемые в теории математические формализмы получают свою интерпретацию благодаря их связям с теоретическими моделями. Богатство связей и отношений, заложенное в теоретической модели, может быть выявлено посредством движения в математическом аппарате теории. Решая уравнения и анализируя полученные результаты, исследователь как бы развертывает содержание теоретической модели и таким способом получает все новые и новые знания об исследуемой реальности.

Аппарат нельзя понимать как формальное исчисление, развертывающееся только в соответствии с правилами математического оперирования. Лишь отдельные фрагменты этого аппарата строятся подобным способом. «Сцепление» же их осуществляется за счет обращения к теоретическим схемам, которые эксплицируются в форме особых модельных представлений, что позволяет, проводя мысленные эксперименты над абстрактными объектами таких схем, корректировать преобразования уравнений принятого формализма.

Также следует уточнить само понятие интерпретации. Известно, что интерпретация уравнений обеспечивается их связью с теоретической моделью, в объектах которой выполняются уравнения, и связью уравнений с опытом. Последний аспект называется эмпирической интерпретацией.

Эмпирическая интерпретация достигается за счет особого отображения теоретических схем на объекты тех экспериментально-измерительных ситуаций, на объяснение которых претендует модель.

Процедуры отображения состоят в установлении связей между признаками абстрактных объектов и отношениями эмпирических объектов. Описанием этих процедур выступают правила соответствия. Они составляют содержание операциональных определений величин, фигурирующих в уравнениях теории.

Специфика сложных форм теоретического знания таких, как физическая теория, состоит в том, что операции построения частных теоретических схем на базе конструктов фундаментальной теоретической схемы не описываются в явном виде в постулатах и определениях теории. Эти операции демонстрируются на конкретных образцах, которые включаются в состав теории в качестве своего рода эталонных ситуаций, показывающих, как осуществляется вывод следствий из основных уравнений теории. Неформальный характер всех этих процедур, необходимость каждый раз обращаться к исследуемому объекту и учитывать его особенности при конструировании частных теоретических схем превращают вывод каждого очередного следствия из основных уравнений теории в особую теоретическую задачу. Развертывание теории осуществляется в форме решения таких задач. Решение некоторых из них с самого начала предлагается в качестве образцов, в соответствии с которыми должны решаться остальные задачи.

4. Основания науки (идеалы и нормы исследования, научная картина мира, философские основания науки)

В рамках каждой научной дисциплины многообразие знаний организуется в единое системное целое во многом благодаря основаниям, на которые они опираются. Основания выступают системообразующим блоком, который определяет стратегию научного поиска, систематизацию полученных знаний и обеспечивает их включение в культуру соответствующей исторической эпохи.

Идеалы и нормы исследовательской деятельности

Как и всякая деятельность, научное познание регулируется определенными идеалами и нормативами , в которых выражены представления о целях научной деятельности и способах их достижения. Среди идеалов и норм науки могут быть выявлены: а) собственно познавательные установки, которые регулируют процесс воспроизведения объекта в различных формах научного знания; б) социальные нормативы, которые фиксируют роль науки и ее ценность для общественной жизни на определенном этапе исторического развития, управляют процессом коммуникации исследователей, отношениями научных сообществ и учреждений друг с другом и с обществом в целом и т.д.

Эти два аспекта идеалов и норм науки соответствуют двум аспектам ее функционирования: как познавательной деятельности и как социального института.

Познавательные идеалы науки имеют достаточно сложную организацию. В их системе можно выделить следующие основные формы:

1) идеалы и нормы объяснения и описания,

2) доказательности и обоснованности знания,

3) построения и организации знаний.

В совокупности они образуют своеобразную схему метода исследовательской деятельности, обеспечивающую освоение объектов определенного типа.

Можно выделить как общие, инвариантные, так и особенные черты в содержании познавательных идеалов и норм.

Если общие черты характеризуют специфику научной рациональности, то особенные черты выражают ее исторические типы и их конкретные дисциплинарные разновидности.

Первый уровень представлен признаками, которые отличают науку от других форм познания (обыденного, стихийно-эмпирического познания, искусства, религиозно-мифологического освоения мира и т.п.). Например, в разные исторические эпохи по-разному понимались природа научного знания, процедуры его обоснования и стандарты доказательности. Но то, что научное знание отлично от мнения, что оно должно быть обосновано и доказано, что наука не может ограничиваться непосредственными констатациями явлений, а должна раскрыть их сущность, - все эти нормативные требования выполнялись и в античной, и в средневековой науке, и в науке нашего времени.

Второй уровень содержания идеалов и норм исследования представлен исторически изменчивыми установками , которые характеризуют стиль мышления, доминирующий в науке на определенном историческом этапе ее развития.

Наконец, в содержании идеалов и норм научного исследования можно выделить третий уровень , в котором установки второго уровня конкретизируются применительно к специфике предметной области каждой науки (математики, физики, биологии, социальных наук и т.п.).

В системе идеалов и норм науки выражен определенный образ познавательной деятельности, представление об обязательных процедурах, которые обеспечивают постижение истины. Этот образ всегда имеет социокультурную размерность. Он формируется в науке под влиянием социальных потребностей, испытывая воздействие мировоззренческих структур, лежащих в фундаменте культуры той или иной исторической эпохи. Эти влияния определяют специфику второго уровня содержания идеалов и норм исследования. Именно на этом уровне наиболее ясно прослеживается зависимость идеалов и норм науки от культуры эпохи, от доминирующих в ней мировоззренческих установок и ценностей.

Исследователь может не осознавать всех применяемых в поиске нормативных структур, многие из которых ему представляются само собой разумеющимися. Он чаще всего усваивает их, ориентируясь на образцы уже проведенных исследований и на их результаты. В этом смысле процессы построения и функционирования научных знаний демонстрируют идеалы и нормы, в соответствии с которыми создавались научные знания.

Научная картина мира

Второй блок оснований науки составляет научная картина мира. В развитии современных научных дисциплин особую роль играют обобщенные схемы - образы предмета исследования, посредством которых фиксируются основные системные характеристики изучаемой реальности . Эти образы часто именуют специальными картинами мира. Термин «мир» применяется здесь в специфическом смысле - как обозначение некоторой сферы действительности, изучаемой в данной науке («мир физики», «мир биологии» и т.п.). Чтобы избежать терминологических дискуссий, имеет смысл пользоваться иным названием - картина исследуемой реальности. Наиболее изученным ее образцом является физическая картина мира. Но подобные картины есть в любой науке, как только она конституируется в качестве самостоятельной отрасли научного знания.

Обобщенная характеристика предмета исследования вводится в картине реальности посредством представлений:

1) о фундаментальных объектах, из которых полагаются построенными все другие объекты, изучаемые соответствующей наукой;

2) о типологии изучаемых объектов;

3) об общих закономерностях их взаимодействия;

4) о пространственно-временной структуре реальности.

Эти представления дают определенную

- онтологию (структуру бытия, мира),

- систематизацию знаний в рамках соответствующей науки,

-исследовательскую программу , которая целенаправляет постановку задач как эмпирического, так и теоретического поиска и выбор средств их решения.

Картину мира можно рассматривать в качестве некоторой теоретической модели исследуемой реальности. Но это особая модель, отличная от моделей, лежащих в основании конкретных теорий.

Во-первых, они различаются по степени общности. На одну и ту же картину мира может опираться множество теорий, в том числе и фундаментальных.

Во-вторых, специальную картину мира можно отличить от теоретических схем, анализируя образующие их абстракции (идеальные объекты) Идеальные объекты, образующие картину мира, и абстрактные объекты, образующие в своих связях теоретическую схему, имеют разный статус. Последние представляют собой идеализации, и их нетождественность реальным объектам очевидна. Идеальные объекты картины мира исследователь считает реально существующими. Будучи отличными от картины мира, теоретические схемы всегда связаны с ней. Установление этой связи является одним из обязательных условий построения теории.

Благодаря связи с картиной мира происходит объективизация теоретических схем. Составляющая их система абстрактных объектов предстает как выражение сущности изучаемых процессов «в чистом виде».

Процедура отображения теоретических схем на картину мира обеспечивает ту разновидность интерпретации уравнений, выражающих теоретические законы, которую в логике называют концептуальной (или семантической) интерпретацией и которая обязательна для построения теории. Таким образом, вне картины мира теория не может быть построена в завершенной форме.

Философские основания науки

Рассмотрим теперь третий блок оснований науки. Включение научного знания в культуру предполагает его философское обоснование . Оно осуществляется посредством философских идей и принципов, которые обосновывают онтологические постулаты науки, а также ее идеалы и нормы. Характерным в этом отношении примером может служить обоснование Фарадеем материального статуса электрических и магнитных полей ссылками на принцип единства материи и силы.

Как правило, в фундаментальных областях исследования развитая наука имеет дело с объектами, еще не освоенными ни в производстве, ни в обыденном опыте (иногда практическое освоение таких объектов осуществляется даже не в ту историческую эпоху, в которую они были открыты). Для обыденного здравого смысла эти объекты могут быть непривычными и непонятными.

Поэтому научные картины мира (схема объекта), а также идеалы и нормативные структуры науки (схема метода) не только в период их формирования, но и в последующие периоды перестройки нуждаются в своеобразной стыковке с господствующим мировоззрением той или иной исторической эпохи, с категориями ее культуры. Такую «стыковку» обеспечивают философские основания науки. В их состав входят, наряду с обосновывающими постулатами, также идеи и принципы, которые обеспечивают эвристику поиска.

Но совпадение философской эвристики и философского обоснования не является обязательным. Может случиться, что в процессе формирования новых представлений, исследователь использует одни философские идеи и принципы, а затем развитые им представления получают другую философскую интерпретацию, и только так они обретают признание и включаются в культуру. Таким образом, философские основания науки гетерогенны. Они допускают вариации философских идей и категориальных смыслов, применяемых в исследовательской деятельности.

Гетерогенность философских оснований не исключает их системной организации. В них можно выделить по меньшей мере две взаимосвязанные подсистемы: во-первых, онтологическую , представленную сеткой категорий, которые служат матрицей понимания и познания исследуемых объектов (категории «вещь», «свойство», «отношение», «процесс», «состояние», «причинность», «необходимость», «случайность», «пространство», «время» и т.п.), во-вторых, эпистемологическую, выраженную категориальными схемами, которую характеризуют познавательные процедуры и их результат (понимание истины, метода, знания, объяснения, доказательства, теории, факта и т.п.).

Обе подсистемы исторически развиваются в зависимости от типов объектов, которые осваивает наука, и от эволюции нормативных структур, обеспечивающих освоение таких объектов. Развитие философских оснований выступает необходимой предпосылкой экспансии науки на новые предметные области.

Подобные документы

    Эмпирический и теоретический структурные уровни научного знания. Понятие, роль и задачи эмпирического познания. Методы изучения объектов: наблюдение, эксперимент, измерение и описание. Основные характеристики теоретического познания. Виды умозаключений.

    реферат , добавлен 02.02.2011

    Эмпирический и теоретический уровни научного познания, их единство и различие. Понятие научной теории. Проблема и гипотеза как формы научного поиска. Динамика научного познания. Развитие науки как единство процессов дифференциации и интеграции знания.

    реферат , добавлен 15.09.2011

    Уровни научного познания: эмпирический (непосредственное изучение реальных чувственно воспринимаемых объектов), теоретический (обработка данных с помощью понятий, категорий, законов), метатеоретический (исследование математических и логических теорий).

    презентация , добавлен 27.06.2015

    Научное познание и его уровни. Формы научного познания. Методы научного познания. Эмпирический и теоретический уровни познания. Достоверность знания - необходимое условие его превращения в факт. Научная идея. Мыслительный эксперимент.

    реферат , добавлен 24.04.2007

    Наука есть постижение мира, в котором мы живем. Соответственно этому наука определяется как структура по производству объективных знаний о мире, включающем и самого человека. Эмпирический и теоретический уровни знания. Философские основания науки.

    реферат , добавлен 17.08.2008

    Накопительная и диалектическая модели развития научного знания. Принятие эволюции за повышение степени общности знания как суть индуктивистского подхода к науке и ее истории. Сущность концепции внутренней и внешней причин развития научного знания.

    реферат , добавлен 23.12.2015

    Метод научного исследования как способ познания действительности. Основные уровни методологии. Специальные методы исследования, их использование в одной отрасли научного знания или в нескольких узких областях знаний. Характеристика теории моделирования.

    презентация , добавлен 22.08.2015

    Фундаментальные представления, понятия и принципы науки как ее основание. Компоненты научного знания, его систематический и последовательный характер. Общие, частные и рабочие гипотезы. Основные типы научных теорий. Проблема как форма научного знания.

    реферат , добавлен 06.09.2011

    Философский анализ технического знания. Феномен технической теории: особенности становления и строение. Эмпирический и теоретический уровни технического знания. Рассмотрение с философской стороны практической деятельности Николая Николаевича Бенардоса.

    контрольная работа , добавлен 10.05.2012

    Понимание научного знания как набора догадок о мире. Рост научного знания в логико-методологической концепции Поппера. Схема развития научного знания. Теория познания К. Поппера. Выдвижение теорий, их проверка и опровержение. Возрастание сложности теорий.

Современная наука дисциплинарно организована. Она состоит из различных областей знания, взаимодействующих между собой и вместе с тем имеющих относительную самостоятельность. Если рассматривать науку как целое, то она принадлежит к типу сложных развивающихся систем, которые в своем развитии порождают все новые относительно автономные подсистемы и новые интегративные связи, управляющие их взаимодействием.

В каждой отрасли науки (подсистеме развивающегося научного знания) - физике, химии, биологии и т.д., - в свою очередь, можно обнаружить многообразие различных форм знания: эмпирические факты, законы, гипотезы, теории различного типа и степени общности и т.д.

В структуре научного знания выделяют прежде всего два уровня знания - эмпирический и теоретический. Им соответствуют два взаимосвязанных, но в то же время специфических вида познавательной деятельности: эмпирическое и теоретическое исследование.

Прежде чем говорить об этих уровнях, заметим, что в данном случае речь идет о научном познании, а не о познавательном процессе в целом. Применительно к последнему, то есть к процессу познания в целом, имея в виду не только научное, но и обыденное познание, художественно-образное освоение мира и т.д., чаще всего говорят о чувственной и рациональной ступенях познания. Категории "чувственное" и "рациональное", с одной стороны, "эмпирическое" и "теоретическое" - с другой, достаточно близки по содержанию. Но в то же время их не следует отождествлять друг с другом. Чем же отличаются категории "эмпирическое" и "теоретическое" от категорий "чувственное" и "рациональное"?

Во-первых, эмпирическое познание никогда не может быть сведено только к чистой чувственности. Даже первичный слой эмпирических знаний - данные наблюдений - всегда фиксируется в определенном языке: причем это язык, использующий не только обыденные понятия, но и специфические научные термины. Данные наблюдения нельзя свести только к формам чувственности - ощущениям, восприятиям, представлениям. Уже здесь возникает сложное переплетение чувственного и рационального.

Но эмпирическое познание к данным наблюдений не сводится. Оно предполагает также формирование на основе данных наблюдения особого типа знания - научного факта. Научный факт возникает как результат очень сложной рациональной обработки данных наблюдений: их осмысления, понимания, интерпретации. В этом смысле любые факты науки представляют собой взаимодействие чувственного и рационального.

Но, может быть, о теоретическом знании можно сказать, что оно представляет собой чистую рациональность? Нет, и здесь мы сталкиваемся с переплетением чувственного и рационального. Формы рационального познания (понятия, суждения, умозаключения) доминируют в процессе теоретического освоения действительности. Но при построении теории используются также и наглядные модельные представления, которые являются формами чувственного познания, ибо представления, как и восприятие, относятся к формам живого созерцания. Даже сложные и высокоматематизированные теории включают в свой состав представления типа идеального маятника, абсолютно твердого тела, идеального обмена товаров, когда товар обменивается на товар строго в соответствии с законом стоимости, и т.д. Все эти идеализированные объекты являются наглядными модельными образами (обобщенными чувствованиями), с которыми производятся мысленные эксперименты. Результатом же этих экспериментов является выяснение тех сущностных связей и отношений, которые затем фиксируются в понятиях. Таким образом, теория всегда содержит чувственно-наглядные компоненты. Можно говорить лишь о том, что на низших уровнях эмпирического познания доминирует чувственное, а на теоретическом уровне - рациональное.

Различение эмпирического и теоретического уровней следует осуществлять с учетом специфики познавательной деятельности на каждом из этих уровней. Основные критерии, по которым различаются эти уровни, следующие: 1) характер предмета исследования, 2) тип применяемых средств исследования и 3) особенности метода.

Существуют ли различия между предметом теоретического и эмпирического исследования? Да, существуют. Эмпирическое и теоретическое исследования могут познавать одну и ту же объективную реальность, но ее видение, ее представление в знаниях будут даваться по-разному. Эмпирическое исследование в основе своей ориентировано на изучение явлений и зависимостей между ними. На уровне эмпирического познания сущностные связи не выделяются еще в чистом виде, но они как бы высвечиваются в явлениях, проступают через их конкретную оболочку.

На уровне же теоретического познания происходит выделение сущностных связей в чистом виде. Сущность объекта представляет собой взаимодействие ряда законов, которым подчиняется данный объект. Задача теории как раз и заключается в том, чтобы воссоздать все эти отношения между законами и таким образом раскрыть сущность объекта.

Следует различать эмпирическую зависимость и теоретический закон. Эмпирическая зависимость является результатом индуктивного обобщения опыта и представляет собой вероятностно-истинное знание. Теоретический же закон - это всегда знание достоверное. Получение такого знания требует особых исследовательских процедур.

Известен, например, закон Бойля - Мариотта, описывающий корреляцию между давлением и объемом газа:

Где Р - давление газа, V - его объем.

Вначале он был открыт Р. Бойлем как индуктивное обобщение опытных данных, когда в эксперименте была обнаружена зависимость между объемом сжимаемого под давлением газа и величиной этого давления.

В первоначальной формулировке эта зависимость не имела статуса теоретического закона, хотя она и выражалась математической формулой. Если бы Бойль перешел к опытам с большими давлениями, то он обнаружил бы, что эта зависимость нарушается. Физики говорят, что закон PV = const применим только в случае очень разреженных газов, когда система приближается к модели идеального газа и межмолекулярными взаимодействиями можно пренебречь. А при больших давлениях существенными становятся взаимодействия между молекулами (Вандер-Ваальсовы силы), и тогда закон Бойля нарушается. Зависимость, открытая Бойлем, была вероятностно-истинным знанием, обобщением такого же типа, как утверждение "Все лебеди белые", которое было справедливым, пока не открыли черных лебедей. Теоретический же закон PV = const был получен позднее, когда была построена модель идеального газа, частицы которого были уподоблены упруго сталкивающимся бильярдным шарам.

Итак, выделив эмпирическое и теоретическое познание как два особых типа исследовательской деятельности, мы можем сказать, что предмет их разный, то есть теория и эмпирическое исследование имеют дело с разными срезами одной и той же действительности. Эмпирическое исследование изучает явления и их корреляции; в этих корреляциях, в отношениях между явлениями оно может уловить проявление закона. Но в чистом виде он дается только в результате теоретического исследования.

Следует подчеркнуть, что увеличение количества опытов само по себе не делает эмпирическую зависимость достоверным фактом, потому что индукция всегда имеет дело с незаконченным, неполным опытом.

Сколько бы мы ни проделывали опытов и ни обобщали их, простое индуктивное обобщение опытов не ведет к теоретическому знанию. Теория не строится путем индуктивного обобщения опыта. Это обстоятельство во всей его глубине было осознано в науке сравнительно недавно, когда она достигла достаточно высоких ступеней теоретизации. Эйнштейн считал этот вывод одним из важнейших гносеологических уроков развития физики XX века.

Перейдем теперь от различения эмпирического и теоретического уровней по предмету к их различению по средствам. Эмпирическое исследование базируется на непосредственном практическом взаимодействии исследователя с изучаемым объектом. Оно предполагает осуществление наблюдений и экспериментальную деятельность. Поэтому средства эмпирического исследования необходимо включают в себя приборы, приборные установки и другие средства реального наблюдения и эксперимента.

В теоретическом же исследовании отсутствует непосредственное практическое взаимодействие с объектами. На этом уровне объект может изучаться только опосредованно, в мысленном эксперименте, но не в реальном.

Особая роль эмпирии в науке заключается в том, что только на этом уровне исследования человек непосредственно взаимодействует с изучаемыми природными или социальными объектами. И в этом взаимодействии объект проявляет свою природу, объективно присущие ему характеристики. Мы можем сконструировать в уме множество моделей и теорий, но проверить, совпадают ли эти схемы с действительностью, можно только в реальной практике. А с такой практикой мы имеем дело именно в рамках эмпирического исследования.

Кроме средств, которые непосредственно связаны с организацией экспериментов и наблюдений, в эмпирическом исследовании применяются и понятийные средства. Они функционируют как особый язык, который часто называют эмпирическим языком науки. Он имеет сложную организацию, в которой взаимодействуют собственно эмпирические термины и термины теоретического языка.

Смыслом эмпирических терминов являются особые абстракции, которые можно было бы назвать эмпирическими объектами. Их следует отличать от объектов реальности. Эмпирические объекты - это абстракции, выделяющие в действительности некоторый набор свойств и отношений вещей. Реальные объекты представлены в эмпирическом познании в образе идеальных объектов, обладающих жестко фиксированным и ограниченным набором признаков. Реальному же объекту присуще бесконечное число признаков. Любой такой объект неисчерпаем в своих свойствах, связях и отношениях.

Возьмем, например, описание опытов Био и Савара, в которых было обнаружено магнитное действие электрического тока. Это действие фиксировалось по поведению магнитной стрелки, находящейся вблизи прямолинейного провода с током. И провод с током, и магнитная стрелка обладали бесконечным числом признаков. Они имели определенную длину, толщину, вес, конфигурацию, окраску, находились на некотором расстоянии друг от друга, от стен помещения, в котором проводился опыт, от Солнца, от центра Галактики и т.д. Из этого бесконечного набора свойств и отношений в эмпирическом термине "провод с током", как он используется при описании данного опыта, были выделены только такие признаки: 1) быть на определенном расстоянии от магнитной стрелки; 2) быть прямолинейным; 3) проводить электрический ток определенной силы. Все остальные свойства здесь не имеют значения, и от них в эмпирическом описании абстрагируются. Точно так же по ограниченному набору признаков конструируется тот идеальный эмпирический объект, который образует смысл термина "магнитная стрелка". Каждый признак эмпирического объекта можно обнаружить в реальном объекте, но не наоборот.

Что же касается теоретического познания, то в нем применяются иные исследовательские средства. Как уже говорилось, здесь отсутствуют средства материального, практического взаимодействия с изучаемым объектом. Но и язык теоретического исследования отличается от языка эмпирических описаний. В качестве основного средства теоретического исследования выступают так называемые теоретические идеальные объекты. Их также называют идеализированными объектами, абстрактными объектами или теоретическими конструкциями. Это - особые абстракции, в которых заключен смысл теоретических терминов. Ни одна теория не строится без применения таких объектов. Что они собою представляют?

Их примерами могут служить материальная точка, абсолютно твердое тело, идеальный товар, который обменивается на другой товар строго в соответствии с законом стоимости (здесь происходит абстрагирование от колебаний рыночных цен), идеализированная популяция в биологии, по отношению к которой формулируется закон Харди - Вайнберга (бесконечная популяция, где все особи скрещиваются равновероятно).

Идеализированные теоретические объекты, в отличие от эмпирических объектов, наделены не только теми признаками, которые мы можем обнаружить в реальном взаимодействии реальных объектов, но и признаками, которых нет ни у одного реального объекта. Например, материальную точку определяют как тело, лишенное размера, но сосредоточивающее в себе всю массу тела. Таких тел в природе нет. Они представляют собой результат нашего мыслительного конструирования, когда мы абстрагируемся от несущественных (в том или ином отношении) связей и признаков предмета и строим идеальный объект, который выступает носителем только сущностных связей. В реальности сущность нельзя отделить от явления, одно обнаруживается через другое. Задачей же теоретического исследования является познание сущности в чистом виде. Введение в теорию абстрактных, идеализированных объектов как раз и позволяет решать эту задачу.

Соответственно своим особенностям эмпирический и теоретический типы познания различаются по методам исследовательской деятельности. Как уже было сказано, основными методами эмпирического исследования являются реальный эксперимент и реальное наблюдение. Важную роль играют также методы эмпирического описания, ориентированные на максимально очищенную от субъективных наслоений объективную характеристику изучаемых явлений.

Что же касается теоретического исследования, то здесь применяются особые методы: идеализация (метод построения идеализированного объекта); мысленный эксперимент с идеализированными объектами, который как бы замещает реальный эксперимент с реальными объектами; методы построения теории (восхождение от абстрактного к конкретному, аксиоматический и гипотетико-дедуктивный методы); методы логического и исторического исследования и др.

Итак, эмпирический и теоретический уровни знания отличаются по предмету, средствам и методам исследования. Однако выделение и самостоятельное рассмотрение каждого из них представляет собой абстракцию. В реальной действительности эти два слоя знания всегда взаимодействуют. Выделение же категорий "эмпирическое" и "теоретическое" в качестве средств методологического анализа позволяет выяснить, как устроено и как развивается научное знание.

Структура эмпирического и теоретического уровней знания

Эмпирический и теоретический уровни имеют сложную организацию. В них можно выделить особые подуровни, каждый из которых характеризуется специфическими познавательными процедурами и особыми типами получаемого знания.

На эмпирическом уровне мы можем выделить по меньшей мере два подуровня: во-первых, наблюдения, во-вторых, эмпирические факты.

Данные наблюдения содержат первичную информацию, которую мы получаем непосредственно в процессе наблюдения за объектом. Эта информация дана в особой форме - в форме непосредственных чувственных данных субъекта наблюдения, которые затем фиксируются в форме протоколов наблюдения. Протоколы наблюдения выражают информацию, получаемую наблюдателем, в языковой форме.

В протоколах наблюдения всегда содержатся указания на то, кто осуществляет наблюдение, а если наблюдение строится в процессе эксперимента с помощью каких-либо приборов, то обязательно даются основные характеристики прибора.

Это не случайно, поскольку в данных наблюдения наряду с объективной информацией о явлениях содержится некоторый пласт субъективной информации, зависящий от состояния наблюдателя, показаний его органов чувств. Объективная информация может быть искажена случайными внешними воздействиями, погрешностями, которые дают приборы, и т.д. Наблюдатель может ошибиться, снимая показания с прибора. Приборы могут давать как случайные, так и систематические ошибки. Поэтому данные наблюдения еще не являются достоверным знанием, и на них не может опираться теория. Базисом теории являются не данные наблюдения, а эмпирические факты. В отличие от данных наблюдения, факты - это всегда достоверная, объективная информация; это такое описание явлений и связей между ними, где сняты субъективные наслоения. Поэтому переход от данных наблюдения к эмпирическому факту - довольно сложная процедура. Часто бывает так, что факты многократно перепроверяются, а исследователь, ранее считавший, что имеет дело с эмпирическим фактом, убеждается, что полученное им знание еще не соответствует самой реальности, а значит, не является фактом.

Переход от данных наблюдения к эмпирическому факту предполагает следующие познавательные операции. Во-первых, рациональную обработку данных наблюдения и поиск в них устойчивого, инвариантного содержания. Для формирования факта необходимо сравнить между собой множество наблюдений, выделить в них повторяющееся и устранить случайные возмущения и погрешности, связанные с ошибками наблюдателя. Если наблюдение осуществляется так, что производится измерение, то данные наблюдения записываются в виде чисел. Тогда для получения эмпирического факта требуется определенная статистическая обработка данных, позволяющая выявить в них инвариантное содержание измерений.

Поиск инварианта как способ установления факта свойствен не только естественно-научному, но и социально-историческому знанию. Скажем, историк, устанавливающий хронологию событий прошлого, всегда стремится выявить и сопоставить множество независимых исторических свидетельств, выступающих для него в функции данных наблюдения.

Во-вторых, для установления факта необходимо истолкование выявляемого в наблюдениях инвариантного содержания. В процессе такого истолкования широко используются ранее полученные теоретические знания.

Характерной в этом отношении является история открытия такого необычного астрономического объекта, как пульсар. Летом 1967 года аспирантка известного английского радиоастронома Э. Хьюиша мисс Белл случайно обнаружила на небе радиоисточник, который излучал короткие радиоимпульсы. Многократные систематические наблюдения позволили установить, что эти импульсы повторяются строго периодически, через 1,33 с. Первоначальная интерпретация этого инварианта наблюдений была связана с гипотезой об искусственном происхождении этого сигнала, который посылает сверхцивилизация. Вследствие этого наблюдения засекретили, и почти полгода о них никому не сообщалось.

Затем была выдвинута другая гипотеза - о естественном происхождении источника, подкрепленная новыми данными наблюдений (были обнаружены новые источники излучения подобного типа). Эта гипотеза предполагала, что излучение исходит от маленького быстро вращающегося тела. Применение законов механики позволило вычислить размеры данного тела - оказалось, что оно намного меньше Земли. Кроме того, было установлено, что источник пульсации находится именно в том месте, где более тысячи лет назад произошел взрыв сверхновой звезды. В конечном итоге был установлен факт, что существуют особые небесные тела - пульсары, являющиеся остаточным результатом взрыва сверхновой.

Мы видим, что установление эмпирического факта требует применения целого ряда теоретических положений (в данном случае это сведения из области механики, электродинамики, астрофизики и т.д.), но тогда возникает очень сложная проблема, которая дискутируется сейчас в методологической литературе: получается, что для установления факта нужны теории, а они, как известно, должны проверяться фактами. Специалисты-методологи формулируют эту проблему как проблему теоретической нагруженности фактов, то есть как проблему взаимодействия теории и факта. Безусловно, при установлении приведенного выше эмпирического факта использовались многие полученные ранее теоретические законы и положения. В этом смысле, действительно, эмпирический факт оказывается теоретически нагруженным, он не является независимым от наших предшествующих теоретических знаний. Для того чтобы существование пульсаров было установлено в качестве научного факта, потребовалось применить законы Кеплера, законы термодинамики, законы распространения света - достоверные теоретические знания, ранее обоснованные другими фактами. Если же эти законы окажутся неверными, то необходимо будет пересмотреть и факты, которые основываются на этих законах.

В свою очередь, уже после открытия пульсаров вспомнили, что существование этих объектов было теоретически предсказано советским физиком Л. Д. Ландау, так что факт их открытия стал еще одним подтверждением его теории, хотя при установлении данного факта непосредственно его теория не использовалась.

Итак, в формировании факта участвуют знания, которые проверены независимо от теории, а факты дают стимул для образования новых теоретических знаний, которые, в свою очередь, если они достоверны, могут снова участвовать в формировании новейших фактов и т.п.

Перейдем теперь к организации теоретического уровня знаний. Здесь тоже можно выделить два подуровня.

Первый - частные теоретические модели и законы. Они выступают как теории, относящиеся к достаточно ограниченной области явлений. Примерами таких частных теоретических законов могут служить закон колебания маятника в физике или закон движения тел по наклонной плоскости, которые были найдены до того, как была построена ньютоновская механика.

В этом слое теоретического знания, в свою очередь, обнаруживаются такие взаимосвязанные образования, как теоретическая модель, которая объясняет явления, и закон, который формулируется относительно модели. Модель включает идеализированные объекты и связи между ними. Например, если изучаются колебания реальных маятников, то для того чтобы выяснить законы их движения, вводится представление об идеальном маятнике как материальной точке, висящей на недеформируемой нити. Затем вводится другой объект - система отсчета. Это тоже идеализация, а именно - идеальное представление реальной физической лаборатории, снабженной часами и линейкой. Наконец, для выявления закона колебаний вводится еще один идеальный объект - сила, которая приводит в движение маятник. Сила - это абстракция от такого взаимодействия тел, при котором меняется состояние их движения. Система из перечисленных идеализированных объектов (идеальный маятник, система отсчета, сила) образует модель, которая и представляет на теоретическом уровне сущностные характеристики реального процесса колебания любых маятников.

Таким образом, непосредственно закон характеризует отношения идеальных объектов теоретической модели, а опосредованно он применяется к описанию эмпирической реальности.

Второй подуровень теоретического знания - развитая теория. В ней все частные теоретические модели и законы обобщаются таким образом, что они выступают как следствия фундаментальных принципов и законов теории. Иначе говоря, строится некоторая обобщающая теоретическая модель, которая охватывает все частные случаи, и применительно к ней формулируется некоторый набор законов, которые выступают как обобщающие по отношению ко всем частным теоретическим законам.

Таковой, например, является ньютоновская механика. В той формулировке, которую придал ей Л. Эйлер, она вводила фундаментальную модель механического движения посредством таких идеализаций, как материальная точка, которая движется в пространстве-времени системы отсчета под действием некой обобщенной силы. Природа этой силы далее не конкретизируется - ею может быть квазиупругая сила, или сила удара, или сила притяжения. Речь идет о силе вообще. Относительно такой модели и формулируются три закона Ньютона, которые выступают в данном случае как обобщение множества частных законов, отражающих сущностные связи отдельных конкретных видов механического движения (колебание, вращение, движение тела по наклонной плоскости, свободное падение и т.д.). На основе таких обобщенных законов можно далее дедуктивным путем предсказывать и новые частные законы.

Два рассмотренных типа организации научного знания - частные теории и обобщающие развитые теории - взаимодействуют как между собой, так и с эмпирическим уровнем знания.

Итак, научное знание в любой области науки представляет собой огромную массу взаимодействующих между собой различных типов знаний. Теория принимает участие в формировании фактов; в свою очередь, факты требуют построения новых теоретических моделей, которые сначала строятся как гипотезы, а потом обосновываются и превращаются в теории. Бывает и так, что сразу строится развитая теория, которая дает объяснение известным, но не нашедшим ранее объяснения фактам, либо заставляет по-новому интерпретировать известные факты. В общем, существуют разнообразные и сложные процедуры взаимодействия различных слоев научного знания.

Эмпирическое познание, или чувственное, или живое созерцание - это сам процесс познания, включающий в себя три взаимосвязанные формы:

1. ощущение - отражение в сознании человека отдельных сторон, свойств предметов, непосредственное воздействие их на органы чувств;

2. восприятие - целостный образ предмета, непосредственно данный в живом созерцании совокупности всех своих сторон, синтез данных ощущений;

3. представление - обобщенный чувственно-наглядный образ предмета, воздействовавшего на органы чувств в прошлом, но не воспринимаемого в данный момент.

Эмпирическое исследование осуществляется при помощи наблюдения, эксперимента и измерения.

Наблюдение – присутствует не только при реальном контакте с объектом, но и в нашем воображении (знаковое наблюдение – чтение, математика).

Наблюдения: прямые (объект доступен) и косвенные (объект не доступен, доступны только его следы и т.п., которые он оставил).

Апробация (лат.) – одобрение (оно не от слова «проба»).

Измерение: прямое (измерение длины), косвенное (времени, температуры; температура – энергия движения молекул).

Измерение в науке проводится многократно. Так как все величины будут разные в измерении. Каждый конкретный результат – среднее значение (также считается погрешность).

Эксперимент – активное воздействие на объект. Задача: поиск (не знаем, что будет) или проверяем уже существующую гипотезу.

ВОПРОС

ДОПОЛНИТЕЛЬНО

ЭМПИРИЧЕСКИЕ ФОРМЫ И МЕТОДЫ НАУЧНОГО ПОЗНАНИЯ.

Существуют способы структурирования информации, применяемые в исследованной ситуации (описание, сравнение и измерение):

О – описание – представление эмпирических данных в качественных терминах. Используются нарративные методы (повествовательные) и естественный язык. Обязательным требованием к описанию является однозначность и определенность.

С – сравнение – представление эмпирических данных в терминах, отражающих различную степень выраженности. Данная операция выполнима даже если нет точного эталона для сопоставления. Значение сравнения состоит в том, что позволяет упорядочить предметную область без введения четкой единицы измерения.

И – измерение – осуществляемое по определенным правилам операция приписывания количественных характеристик изучаемых объектов, свойствам или отношениям. Способы измерения: прямое и косвенное. В косвенном измерении результат достигается с помощью вычислений, на основании зависимостей между величинами. Арифметизация и ранжирование – это не измерение. Требование к измерению: инвариантность относительно средств измерения, объективность измерения. Требование объективности означает, что исследователь должен сформулировать достаточную для решения степень точности.

Н – наблюдение – исследование ситуации целенаправленного восприятия предметов, явлений и процессов. Структура наблюдений: субъект, объект, условия и обстоятельства (время, место…).

Классификация наблюдений:

1. прямое и косвенное (характер наблюдаемого объекта);

2. непосредственное и опосредованное (с инструментами и без);

3. сплошное и выборочное (по критериям или нет);

4. по времени (непрерывное и прерывистое);

5. нейтральное или преображающее (наблюдатель может влиять на условия наблюдения, преображающее наблюдательское вмешательство возможно только в условия, а не в структуру или поведение объекта)

Особенности наблюдения:

1. Активность субъекта;

2. Теоретическая нагруженность (проявляется даже при отборе объектов наблюдения);

3. Организованность (планирование).

Проблема объективности результатов наблюдения – необходимо добиваться возможной степени независимости (в данных условиях) от различной степени искажения. Первичные результаты наблюдения могут квалифицироваться как научный факт только после интерпретации (допущения и цели исследования).

Э – эксперимент – исследование ситуации изучения объекта в специально создаваемых и контролируемых условиях. Цель воздействия на объект в условиях эксперимента – достичь возможного уровня управления процесса. Структура эксперимента повторяет структуру наблюдения.

Классификация эксперимента:

1. По целям:

a) констатирующий;

b) решающий;

c) контролирующий;

d) поисковый и т.д.

2. По количеству меняющихся условий:

a) однофакторный;

b) многофакторный.

3. Активный и регистрирующий (пассивный)

Если все состояния и факторы назвать переменными, то независимыми называют то множество, которым управляют, а зависимыми – те, что меняются при варьировании независимых элементов – это однофакторный.

В настоящее время более распространены многофакторные эксперименты, в которых независимые переменные варьируются как комплекс. Затем результаты подвергают статистическому анализу, где каждый фактор оценивается по результатам серии опытов (впервые в 1925 году). В таких экспериментах эффективность зависит от концептуальной организации исследования.

Существуют абстракция, в которой представлены отражение и логика экспериментальных исследований:

1. Абсолютная стабильность условий

2. Воспроизводимость

3. Полное отражение в эксперименте той естественной ситуации, абстракцией которого является эксперимент.

Чем более реальный эксперимент соответствует идеалу, тем выше его валидность (действенность).

М – моделирование – под моделью в научном познании понимается такая мысленно представляемая или материально реализованная система, в которой отображаемый объект исследования способен заполнить заменить его таким образом, что его изучение дает новую информацию об этом объекте.

Осознание научной значимости моделирования происходит во 2-й половине XX века в связи с возникновением кибернетики как научного знания.

Данный метод применяется, когда взаимодействие с объектом неэффективно, либо затруднено, либо вообще невозможно (медико-биологические испытания, дорогостоящее оборудование и т.д.).

5 этапов моделирования:

1. Построение модели как воссоздание необходимых параметров (выбор зависит от цели исследования)

2. Изучение модели (детальность)

3. Экстраполяция (перенос) на область знаний об исходном объекте

4. Интерпретация (оценка)

5. Логический аспект (основа) – аналогия является вероятностной, а не дедуктивной.

Т.к. аналогия не дедуктивна, необходимо соблюдать условия:

1. все переносимые признаки должны быть существенными

2. их количество должно быть достаточным

Роль моделирования двояка, т.к. оно является и объектом, и средством исследования одновременно.

Классификация моделей:

1. По субстракту:

a) механическая;

b) географическая;

c) теплофизическая и т.д.

2. По моделируемому аспекту:

a) структурная;

b) функциональная.

3. По виду сходства с оригиналом и моделью:

a) физическое;

b) изоморфное (когда устанавливается соответствие о существенном свойстве);

c) аналоговое (способ воспроизведения объектов, когда модель и объект отличны, а математически описываются одинаково);

d) квазианалоговое (когда различается математическое описание модели и объекта, но эквивалентны относительно результатов).

Функции моделей в научном познании:

1. Обобщающая. Модель может стать адекватной формой для представления знаний, т.е. представлять самостоятельную теоретическую ценность.

2. Эвристическая. Моделирование способно стать основанием для выдвижения новых гипотез, особенно если результаты моделирования не будут совпадать с эмпирическими результатами.

3. Трансляционная. Состоит в переносе концептуальных схем или форм из одной области в другую.

4. Прагматическая. Состоит в улучшении форм представления знаний.

5. Интерпретирующая. Моделирование как средство интерпретации связывает эмпирический и теоретический уровни исследования. С одной стороны, модель может быть средством истолковании теории, с другой стороны – истолкования фактов.