Что такое стандартный вид числа определение. Как записать число в стандартном виде. Очень большие значения

Ученик 9А класса МОУ СОШ №1 п. Селижарово Федичев Дмитрий

Работа может быть использована на уроках геометрии в 9 классе по теме: «Решение треугольников».

К задачам даны ответы, к более сложным задачам приводится решение. Некоторые задачи по усмотрению учителя могут быть предложены в качестве индивидуальной работы с учащимся на уроке или дома, а затем решение рассмотрено с классом по слайду.

Оборудование: интерактивная доска, калькулятор.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Тема: «Решение треугольников. Теорема синусов и косинусов» Подготовил ученик 9А класса МОУ СОШ №1 п. Селижарово Федичев Дмитрий Преподаватель математики Андреева Татьяна Владиславовна Селижарово 2013

Цель урока: - Повторить теоремы синусов и косинусов - Научиться решать задачи с применением теоремы синусов и косинусов по готовым чертежам.

Теорема синусов Стороны треугольника пропорциональны синусам противолежащих углов В С А с а в

N M K 8 x y 45° 30° Найдите x, y

K M T 20 x y 60° 45° x ≈ 16,3 ; y = 22,3 x ≈ 8,3 ; y = 5,7 x ≈ 3,56 ; y = 6,4 Найдите x, y

C B D A 15° y x x ≈ 5,9 ; y ≈ 1,4 x ≈ 1, 4 ; y ≈ 0,5 x ≈ 8,5 ; y ≈ 2,6 Найдите x, y CD – биссектриса

x = 4,6 ; y = 3,4 x = 10,4 ; y = 14 x = 1,3 ; y = 9,2 Найдите x, y M L K 16 x y

x = 4,7 ; y = 7,3 x = 9, 8 ; y = 9,6 x = 5,6 ; y = 7,9 Найдите x, y A B C D 14 x y 45° 30°

Теорема косинусов Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними. В С А с а в α

Ответьте на вопросы: Чему равен cos α если: α = 90°; 0° cos α = 0 => cos ‹ 0 => cos α › 0

130° x 18 16 N K M 1 30.4 30.8 31 Найдите: Х Напомним: cos α = - cos(180°- α) cos 50°≈ 0,84

2 R T S 10 7 4 x 5° 7° 18° Найдите: Х

х 45 ° 5 C B A 3 7 Найдите: Х

60 ° A D 6 9 B C ABCD- параллелограмм Найдите: Х x 6

D C A B x y 4 15 20 10 Найдите: x y Х=13 y=21 X=17 y=26 X=21 y=13

60° x y 42 x:y = 3:8 Найти: x y X=14 y=49 X=18 y=48 X=52 y=36 1 2

QN=12 Найдите: x y 5 2. x= y= 3. x= y= 1. x= y= x 10 6 K Q N M y

Литература: 1. Л.С. Атанасян, В.Ф. Бутузов. Геометрия 7-9 кл., М. «Просвещение», 2011г. 2. Э.Н. Балаян. Геометрия: задачи на готовых чертежах для подготовки к ГИА и ЕГЭ 7-9 классы, Ростов-на-Дону «Феникс», 2013г.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

При решении задач по геометрии из ЕГЭ и ОГЭ по математике довольно часто возникает необходимость, зная две стороны треугольника и угол между ними, найти третью сторону. Или же, зная все стороны треугольника, найти его углы. Для решение этих задач вам потребуется значение теоремы косинусов для треугольника. В данной статье репетитор по математике и физике рассказывает о том, как формулируется, доказывается и применяется на практике при решении задач данная теорема.

Формулировка теоремы косинусов для треугольника

Теорема косинусов для треугольника связывает две стороны треугольника и угол между ними со стороной, лежащей против этого угла. К примеру, обозначим буквами , и длины сторон треугольника ABC , лежащие соответственно против углов A , B и C .

Тогда имеет теорема косинусов для этого треугольника может быть записана в виде:

На рисунке для удобства дальнейших рассуждений угол С обозначен углом . Словами это можно сформулировать следующим образом: «Квадрат любой стороны треугольника равен сумме квадратов двух других сторон за вычетом удвоенного произведения этих сторон на косинус угла между ними.»

Понятно, что если бы вы выражали другую сторону треугольника, например, сторону , то в формуле нужно было бы брать косинус угла A , то есть лежащего против искомой стороны в треугольнике, а справа в уравнении на своих местах стояли бы стороны и . Выражение для квадрата стороны получается аналогично:

Доказательство теоремы косинусов для треугольника

Доказательство теоремы косинусов для треугольника проводят обычно следующим образом. Разбивают исходный треугольник на два прямоугольных треугольника высотой, а дальше играются со сторонами полученных треугольников и теоремой Пифагора. В результате после долгих нудных преобразований получаю нужный результат. Мне лично этот подход не по душе. И не только из-за громоздких вычислений, но ещё и потому что в этом случае приходится отдельно рассматривать случай, когда треугольник является тупоугольным. Слишком много трудностей.

Я предлагаю доказать эту теорему с помощью понятия «скалярного произведения векторов». Я сознательно иду на этот риск для себя, зная, что многие школьники предпочитают обходить эту тему стороной, считая, что она какая-то мутная и с ней лучше не иметь дела. Но нежелание возиться отдельно с тупоугольным треугольником во мне всё же пересиливает. Тем более, что доказательство в результате получается удивительно простым и запоминающимся. Сейчас вы в этом убедитесь.

Заменим стороны нашего треугольника следующими векторами:

Используем теорему косинусов для треугольника ABC . Квадрат стороны равен сумме квадратов сторон и за вычетом удвоенного произведения этих сторон на косинус угла между ними:

Поскольку , то в результат получаем:

Значит, . Понятно, что отрицательное решение мы не берём, потому что длина отрезка — это число положительное.

Искомый угол на рисунке обозначен . Вновь запишем теорему косинусов для треугольника ABC . Поскольку все обозначения у нас сохранились, то и формула, выражающая теорему косинусов для этого треугольника, останется прежней:

Подставим теперь в эту формулу все величины, которые даны. В результате получаем следующее выражение:

После всех вычислений и преобразований получаем следующее простое выражение:

Какой должна быть величина острого угла , чтобы его косинус был равен Смотрим в таблицу, которую можно найти в , и получаем ответ: .

Вот так решаются задачи по геометрии с использованием теоремы косинусов для треугольника. Если вы собираетесь сдавать ОГЭ или ЕГЭ по математике, то этот материал вам нужно освоить обязательно. Соответствующие задачи почти наверняка будут на экзамене. Потренируйтесь самостоятельно в их решении. Выполните следующие задания:

  1. В треугольнике ABC сторона AB равна 4 см, сторона BC равна 6 см, угол B равен 30°. Найдите сторону AC .
  2. В треугольнике ABC сторона AB равна 10, сторона BC равна 8, сторона AC равна 9. Найдите косинус угла A .

Свои ответы и варианты решения пишите в комментариях. Удачи вам!

Материал подготовил , Сергей Валерьевич

Положительное число, записанное в стандартной форме , имеет вид

Число m является натуральным числом или десятичной дробью , удовлетворяет неравенству

и называется мантиссой числа, записанного в стандартной форме .

Число n является целым числом (положительным, отрицательным или нулем) и называется порядком числа, записанного в стандартной форме .

Например, число 3251 в стандартной форме записывается так:

Здесь число 3,251 является мантиссой, а число 3 является порядком.

Стандартная форма записи числа часто используется в научных расчетах и очень удобна для сравнения чисел .

Для того, чтобы сравнить два числа, записанных в стандартной форме, нужно сначала сравнить их порядки. Большим будет то число, порядок которого больше. Если же порядки сравниваемых чисел одинаковы, то нужно сравнить мантиссы чисел. Большим в этом случае будет то число, у которого мантисса больше.

Например, если сравнить между собой записанные в стандартной форме числа

и ,

то, очевидно, первое число больше второго, поскольку у него порядок больше.

Если же сравнить между собой числа

то, очевидно, что второе число больше, чем первое, поскольку порядки у этих чисел совпадают, а мантисса у второго числа больше.

На нашем сайте можно также ознакомиться с разработанными преподавателями учебного центра «Резольвента» учебными материалами для подготовки к ЕГЭ и ОГЭ по математике .

Для школьников, желающих хорошо подготовиться и сдать ЕГЭ или ОГЭ по математике или русскому языку на высокий балл, учебный центр «Резольвента» проводит