Чем отличается вес тела от силы тяжести? Академия занимательных наук. Физика. Видео. Вес и масса - различия в условиях невесомости

Регулярно сталкиваюсь с тем, что люди не понимают разницу между весом и массой. Это в общем-то понятно, поскольку мы находимся всю жизнь в непрекращающем своё действие гравитационном поле Земли, и эти величины для нас постоянно связаны. И эта связь ещё и лингвистически закрепляется тем, что мы узнаём массу с помощью весов, "взвешиваем" себя или, скажем, продукты в магазине.
Но давайте всё-таки попробуем развязать эти понятия.

В тонкости (типа отличающегося g в разных местах Земли и прочего) мы вдаваться не будем. Отмечу, что всё это входит в школьный курс физики, поэтому если всё нижесказанное для вас очевидно, не ругайтесь на тех, кто не успел эти вещи понять, а заодно на тех, кто решил это в сотый раз объяснить.) Я надеюсь, что найдутся люди, которым эта заметка пополнит их аппарат понимания окружающего мира.

Итак, поехали. Масса тела - мера его инертности. То есть мера того, насколько трудно изменить скорость этого тела по модулю (разогнать или затормозить) либо по направлению. В системе СИ измеряется в килограммах (кг). Обозначается обычно буквой m. Является неизменным параметром, что на Земле, что в космосе.

Сила тяжести, измеряется в системе СИ в Ньютонах (Н). Это сила, с которой Земля притягивает тело, и равная произведению m*g. Коэффициент g равен 10 м/с2, называется ускорением свободного падения. С этим ускорением начинает двигаться тело относительно земной поверхности, лишённое опоры (в частности, если тело стартовало из неподвижного состояния, его скорость каждую секунду будет увеличиваться на 10 м/с).

А теперь рассмотрим тело массой m, неподвижно лежащее на столе. Для определённости пусть масса равна 1 кг. На это тело вертикально вниз действует сила тяжести mg (собственно сама вертикаль определяется как раз направлением силы тяжести), равная 10 Н. В технической системе единиц эту силу называют килограмм-силой (кгс).

Стол не позволяет разгоняться нашему телу, действуя на него с силой N, направленной вертикально вверх (эту силу правильнее рисовать от стола, но чтобы линии не накладывались, нарисую тоже из центра тела):

N называется силой реакции опоры, уравновешивает силу тяжести (в данном случае равна по модулю тем же самым 10 Ньютонам), так что равнодействующая сила F (сумма всех сил) равна нулю: F = mg - N = 0.

А то, что силы уравновешены, мы видим из второго закона Ньютона F = m*a, согласно которому если ускорение тела a равно нулю (то есть оно либо покоится, как в нашем случае, либо движется равномерно и прямолинейно), то равнодействующая сила F тоже равна нулю.

Вот теперь можно наконец сказать, что такое вес - это сила, с которой тело действует на подставку или подвес. Согласно третьему закону Ньютона эта сила противоположна силе N и равна ей по модулю. То есть в данном случае составляет те же 10 Н = 1 кгс. Вам, может быть, покажется, что всё это излишне сложно, и надо было сразу сказать, что вес и сила тяжести - одно и то же? Ведь они совпадают и по направлению, и по величине.

Нет, на самом деле они отличаются существенно. Сила тяжести действует постоянно. Вес меняется в зависимости от ускорения тела. Давайте приведём примеры.

1. Вы стартуете вверх на скоростном лифте (скоростном, чтобы фаза ускорения была эффектнее/заметнее). Ваша масса, скажем, 70 кг (вы можете пересчитать все числа ниже для вашей массы). Ваш вес в неподвижном лифте (перед стартом) равен 700 Н (или 70 кгс). В момент разгона вверх результирующая сила F направлена вверх (именно она вас и разгоняет), сила реакции N превышает силу тяжести mg, и поскольку ваш вес (сила, с которой вы действуете на пол лифта) по модулю совпадает с N, вы испытываете так называемую перегрузку. Если бы лифт разгонялся с ускорением g, то вы бы испытали вес 140 кгс, то есть перегрузку 2g, в 2 раза превышающую вес в состоянии покоя. На самом деле в штатном режиме таких перегрузок в лифтах не бывает, ускорение обычно не превышает 1 м/с2, что приводит к перегрузке всего 1.1g. Вес в нашем случае составит 77 кгс. Когда лифт разогнался до нужной скорости, ускорение равно нулю, вес возвращается к начальным 70 кгс. При замедлении вес, напротив, уменьшается, и если ускорение при этом по модулю равно 1 м/с2, то перегрузка составит 0.9g. При движении в обратную сторону (вниз) ситуация переворачивается: при разгоне вес уменьшается, на равномерном участке вес восстанавливается, при замедлении вес увеличивается.

2. Вы бежите, и ваш вес в состоянии покоя по-прежнему 70 кгс. В момент бега, когда вы отталкиваетесь от земли, ваш вес превышает 70 кгс. А пока вы летите (одна нога оторвалась от земли, другая - еще не коснулась), ваш вес равен нулю (поскольку вы не воздействуете ни на подставку, ни на подвес). Это - невесомость. Правда, совсем короткая. Таким образом, бег - это чередование перегрузок и невесомости.

Напомню, что сила тяжести во всех этих примерах никуда не девалась, не менялась, и составляла ваши "кровные" 70 кгс = 700 Н.

Теперь существенно удлиним фазу невесомости: представьте, что вы находитесь на МКС (международной космической станции). При этом мы не устранили силу тяжести - она по-прежнему действует на вас - но поскольку и вы, и станция находитесь в одинаковом орбитальном движении, то относительно МКС вы в невесомости. Можно представить себя где угодно в открытом космосе, просто МКС немного реалистичнее.)

Каким будет ваше взаимодействие с объектами? Ваша масса 70 кг, вы берёте в руку объект массой 1 кг, отбрасываете его от себя. В соответствии с законом сохранения импульса основную скорость получит 1-кг-объект, как менее массивный, и бросок будет примерно столь же "легким", как и на Земле. Но если вы попытаетесь оттолкнуться от объекта массой 1000 кг, то вы фактически оттолкнете себя от него, поскольку основную скорость в этом случае получите вы сами, и для разгона своих 70 кг придётся развить бОльшую силу. Чтобы примерно это представить, каково это, можете подойти сейчас к стене и оттолкнуться от неё руками.

Теперь вы вышли из станции в открытый космос и хотите поманипулировать каким-то массивным объектом. Пусть его масса будет пять тонн.

Честно сказать, я бы прямо очень поостерегся управляться с пятитонным объектом. Да, невесомость и все дела. Но достаточно лишь небольшой его скорости относительно МКС, чтобы прижать вам палец или чего-то посерьёзнее. Эти пять тонн сложно переместить: разогнать, остановить.

А уж представлять, как предложил один человек, себя между двумя объектами массой по 100 тонн и вовсе не хочется. Малейшее их встречное движение, и они вас с лёгкостью придавят. В полнейшей, что характерно, невесомости.)

Ну и наконец. Если вы будете весело лететь по МКС и ударитесь об стенку/переборку, то вам будет больно ровно так же, как если бы вы с той же скоростью бежали и ударились об стену/косяк в своей квартире. Потому что удар уменьшает вашу скорость (то есть сообщает вам ускорение со знаком минус), а ваша масса одинакова в обоих случаях. А значит по второму закону Ньютона и сила воздействия будет соразмерна.

Радует, что в фильмах про космос ("Гравитация", "Интерстеллар", сериал "The Expanse") всё более реалистично (пусть и не без огрехов типа Джорджа Клуни, безнадёжно улетающего от Сандры Буллок) отображают базовые вещи, описанные в этом посте.

Резюмирую. Масса "неотчуждаема" от объекта. Если объект сложно разогнать на Земле (особенно если вы постарались минимизировать трение), то его так же сложно разогнать и в космосе. А что касается весов, то когда вы на них становитесь, они просто измеряют силу, с которой их сдавливают, и для удобства отображают эту силу не в Ньютонах, а в кгс. Не дописывая при этом букву "с", чтобы вас не смущать.)

Масса и вес. Вес и масса. Наверное, чаще всего эти два совершенно разные понятия сравниваются, а то вообще принимаются за одно и тоже. Ведь действительно мы говорим: «Сколько ты весишь?», когда, по сути, имеем ввиду только количественные свойства нашего тела, не особо задумываясь о каких-то других дополнительных взаимодействиях, которые могут подразумевать такие неоднозначные словообразования. Поэтому, чтобы не путаться в определениях, лучше всего разобраться, почему же масса весом быть не может.

Очень неожиданные килограммы

Те цифры, которые появляются на весах после того, как, например, туда положили кулек с клубникой или попытались уместить кита, не только помогают определить, сколько денег нужно заплатить за вкусные ягоды или же узнать, правда ли кит такой большой, как о нем говорят, но и выявить многие другие особенности.

Если утверждать научным языком, то масса – это физическая величина , которая является меркой гравитации тела, энергии и инертности, что естественно влечет за собой определенные характеристики с точки зрения классической механики:

  1. Масса (m) – инвариантна: она не зависит от выбора системы отсчета (СО), то есть пассажир поезда или самолета резко не похудеет или поправиться во время движения его транспортного средства. Подобная относительность СО присуща, например, определению скорости, но не массы, которая так резко не меняется.
  2. Масса не зависит от скорости движения тела. В то же время, инертность – свойство тратить определенное время для смены скорости, определяет именно масса. Слону, к примеру, очень сложно моментально ускориться. Он будет делать стабильные и удобные для себя шаги, а мышке только покажи кота – и только тут ее и видели. Она менее инертна, чем слон, быстрее меняет скорость.
  3. Также, когда два тела взаимодействуют, их массы обратно пропорциональны соотношению ускорений, что тоже является уделом инертности. Такое открытие помогло определить массы планет, спутников и других космических тел, так как сделать это иным способом – практически невозможно.
  4. Масса – аддитивна: вся масса тела равна массам всех его частей.
  5. Существует и исполняется закон сохранения массы – это значит, что какие бы процессы не происходили в любой слаженной системе, общая масса всегда остается одинаковой.

В то же самое время, любое тело может гравитационно взаимодействовать с другими телами. Такая особенность называется гравитационной массой, которая получила свою главную формулировку при изучении силы притяжения. Гравитационное взаимодействие двух тел прямо пропорционально произведению их масс.

Эйнштейн доказал, что любое тело, у которого есть масса, имеет и свой запас энергии (E). Если уменьшается или увеличивается масса, то же самое происходит и с энергией — E = mс² , где с — скорость света.

И все-таки вес

Вес (P) – это измерение ни что иного, как силы, с которой тело воздействует на опору, как результат притяжения Земли. Причем, если эта самая опора пребывает в спокойствии или движется равномерно прямолинейно, тогда вес равен силе притяжения – P = mg, где m – масса тела, g ≈ 9,81 – ускорение свободного падения.

Проще говоря, вес измеряет, как сильно мы давим на поверхность того, где стоим или сидим.
Если тело движется с ускорением, тогда и вес будет определяться с его учетом: P = m(g+a) — во время движения вертикально вверх, P = m(g-a) — вертикально вниз.

Перевес (увеличение веса) – довольно интересное явление, так как может влиять на состояние человека: наблюдается кратковременный упадок зрения, утрудненное дыхание. Перевес случается с космонавтами во время взлета и посадки космического корабля, с летчиками, которые делают маневры (мертвые петли).

Невесомость – это состояние тела, при котором вес равен нулю, из-за того, что сила притяжения придает телу и его опоре одинаковое ускорение. Так для космонавта «исчезает» вес во время пребывания на орбите. Чтобы ощутить подобное, можно просто подпрыгнуть. Тогда не будет под ногами опоры.

В чем же разница?

Итак, масса весом быть не может потому что:

  1. Масса – это количественная величина, а вес – сила.
  2. Масса измеряется в килограммах (СИ), а вес – в ньютонах.
  3. У массы нет направления, а в веса, как в любой приложенной силе, оно есть.
  4. Масса — неизменна, тогда как вес зависит от движения.

Масса и вес – синонимы, но не абсолютные. Масса – это физическая величина, определяющая инертные и гравитационные свойства тел. Масса определяет количество вещества в предмете. Вес – это сила, с которой объект давит на опору или растягивает подвес.

Вес и масса. Чем отличаются? В чем разница?

  1. Масса измеряется в килограммах, а вес в ньютонах.
  2. Вес - это произведение массы на ускорение свободного падения (P = mg). Значение веса (при неизменной массе тела) пропорционально ускорению свободного падения, которое зависит от высоты над земной (или другой планеты) поверхностью. А если еще точнее, то вес - это частное определение 2-го закона Ньютона - сила равна произведению массы на ускорение (F=ma). Поэтому его и вычисляют в Ньютонах, как все силы.
  3. Масса - вещь постоянная, а вес – переменная и зависит, например, от высоты, на которой тело находится. Известно, что с увеличением высоты ускорение свободного падения падает, соответственно уменьшается и вес тела, при одних и тех же условиях измерения. Масса его остается постоянной.

Мы ответили на вопрос: «масса и вес – чем отличаются?». Для лучшего понимания темы рассмотрим на примере, в чем различие веса и массы. Для этого приглядимся пристальнее к нашему миру, в котором исчезла сила притяжения Земли .

Вес и масса - различия в условиях невесомости.

Пусть в нашем мире без тяжести стоит на рельсах большой груженый вагон и пусть трение в его колесах будет возможно меньшим – сделаны шариковые подшипники и идеально гладкие рельсы. Как вы думаете, легко ли будет здесь сдвинуть такой вагон с места и разогнать его до большой скорости? А если он движется, легко ли будет быстро остановить его?

Оказывается, для этого все же нужна порядочная сила. Как же так, почему? – спросите вы. Ведь вагон ничего не весит и мы только что видели, что его можно без труда держать на плечах? Да, но держать поднятый предмет неподвижно – одно дело, а сдвинуть его с места, привести в движение и увеличивать скорость (сообщать ускорение) – другое. Первое зависит от веса, то есть силы притяжения Земли, а второе – от массы.

  • В мире без притяжения Земли вес исчезает, а масса остается. Этим отличаются вес и масса.

Находясь в мире без тяжести, мы заметили бы одно важное обстоятельство. Мы сами и все предметы от толчков взлетают здесь вверх. Но предметы малой массы – карандаши, посуда, книги – взлетают от слабых толчков и со значительным ускорением. А чтобы сдвинуть и заставить летать массивный шкаф или заводской станок, нужна гораздо большая сила, да и скорость их будет увеличиваться очень медленно.

Вспомните слесаря в депо. Ему удалось, толкая снизу, заставить локомотив подняться над полом. Но как медленно отделялись от рельсов колеса и с какой малой скоростью поплыла вверх массивная машина. При этом, чтобы ускорить движение, надо было напрягаться изо всех сил. Нелегко и остановить устремляющуюся вверх громадину, а затем направить ее обратно, вниз. Так же трудно разогнать здесь или остановить вагон, потерявший вес, но сохранивший свою огромную массу.

  • В мире без тяжести, но с оставшейся массой, тела по инерции сохраняют не только состояние покоя, но и движения.

Хорошо, что, оттолкнувшись от пола и взлетев вверх, вы ударились о потолок и ваше движение остановилось. Случись это на улице, вы по инерции полетели бы все дальше от Земли в мировое пространство.

Наблюдая хаос, царящий в комнате или на улице, мы замечаем, что предметы малой массы, например ваши ботинки или овощи из ларька, носятся с большой скоростью. Массивные же шкафы или грузовые автомашины медленно плывут между ними. Тут, собственно, важно было большее или меньшее ускорение, которое сообщило этим различным массам действие даже одинаковых сил. Ведь тот же тепловоз разгонит 20 вагонов скорей и до большей скорости, чем поезд, состоящий из 50 вагонов.

Витая по комнате, остерегайтесь столкнуться с летящим вам навстречу роялем: хотя он ничего и не весит, но имеет большую массу и может ударить вас с изрядной силой.

  • Итак, не будем смешивать две разные вещи: массу и вес – количество вещества, обладающего инерцией, и силу, с которой эту массу притягивает Земля. Напомним еще раз: в этом и заключается разница между весом и массой, именно этим отличаются масса и вес.

«Миров без тяжести» в природе нет – мы могли только вообразить Землю, переставшую притягивать. Но во Вселенной есть миры «малой и большой тяжести» - небесные тела, притягивающие с различной силой.

Масса человека на разных планетах остается той же, а вес меняется в зависимости от силы притяжения. Так, например, если вес космонавта на земле 80 кг, то его вес на орбите будет почти нулевой, на Луне он бы весил меньше 15 кг, а вот на Юпитере - почти 200 кг. При этом его масса во всех случаях остается неизменной. Эта тема раскрывается в следующих статьях.

Какое слово вы употребляете чаще: «масса» или «вес»? Думаю, это зависит от вашей профессии. Если вы учитель физики, то слово «масса» встречается в вашей речи чаще. Если же вы продавец в магазине, то слово «вес» вы слышите и произносите много раз в день. В чём же отличия массы от веса и причём тут профессиональная деятельность? Масса и вес – синонимы, но не абсолютные. Для начала, у обоих слов существует несколько значений. В этом легко убедиться на примере таких словосочетаний: «вес твоего голоса», «вес груза», «масса отличий», «масса тела». Основные значения этих слов в обиходе совпадают, но в науке, особенно в физике, отличия между массой и весом значительные. Так, масса – это физическая величина, определяющая инертные и гравитационные свойства тел. Масса определяет количество вещества в предмете. Вес – это сила, с которой объект давит на опору, чтобы не упасть. Исходя из этого определения, приходим к выводу, что в случае с весом гравитационная составляющая является обязательной для дачи верного определения. Так, например, если вес космонавта на земле 80 кг, то его вес на орбите будет почти нулевой, на Луне он бы весил меньше 15 кг, а вот на Юпитере — почти 200 кг. При этом его масса во всех случаях остается неизменной.

Официально масса и вес имеют различные единицы измерения, масса – килограммы, вес – ньютоны. Интересно, что в медицине традиционно мы имеем дело с понятием «вес человека», «вес новорождённого», который измеряют в килограммах, то есть на самом деле речь идёт о массе. При этом масса не подразумевает действие каких-либо сил, как вес. Это величина, которая рассчитывается в состоянии покоя и инертности.

  1. Масса — фундаментальная физическая величина, определяющая количество вещества и инертные свойства тела. Вес — это сила, с которой предмет давит на опору, которая зависит от гравитации. Например, масса человека на разных планетах остается той же, а вес меняется в зависимости от силы тяжести.
  2. Масса стандартно измеряется в килограммах, вес – в ньютонах.

Сила тяжести и вес два понятия, участвующие в гравитационном теории поля физики. Эти два понятия часто неправильно истолкованы и используются в неправильном контексте. Эта ситуация усугубляется тем, что на обыденном уровне понятия массы (свойство материи) и веса также воспринимаются как нечто тождественное. Именно поэтому правильное понимания тяжести и веса важно для науки. Зачастую эти две почти аналогичные концепции используются как взаимозаменяемые. В этой статье приведен обзор основных понятий, их проявления, частные случаи, сходства и, наконец, их различия.
Анализ основных понятий:

Сила, направленная на объект со стороны планеты Земля или со стороны другой планеты во Вселенной (любого астрономического тела в широком понимании) является силой тяжести. Сила является наблюдаемой демонстрацией проявления силы гравитации. Численно выражается по уравнению Fтяж=mg (g=9.8м/c2) .

Данная сила приложена к каждой микрочастице тела, на макроуровне это означает, что она приложена к центру тяжести данного тела, так как силы, действующие на всякую частицу отдельно, можно заменить равнодействующей этих сил. Эта сила является векторной, всегда устремленной к центру масс планеты. С другой стороны Fтяж можно выразить через силу гравитации между двумя телами, обычно различными по массе. Будет наблюдаться обратно пропорциональная связанность с интервалом между взаимодействующими объектами в квадрате (по формуле Ньютона).

В случае тела на плоскости им будет являться промежуток между телом и центром массы планеты, что есть ее радиус (R). В зависимости от высоты тела над поверхностью Fтяж и g изменяются, так как увеличивается промежуток между связанными объектами соответственно (R+h) , где h показывает высоту над поверхностью. Отсюда следует зависимость, что чем выше находится объект над уровнем Земли, тем меньше сила тяжести и тем меньше g.

Вес тела, характеристики, сопоставление с силой тяжести

Сила, с которой тело действует на опору или вертикальный подвес называется весом тела (W) . Это векторная, направленная величина. Атомы (или молекулы) тела отталкиваются от частиц основания в результате чего происходит частичная деформация, как опоры, так и объекта, возникают силы упругости и изменяется в некоторых случаях незначительно форма тела и опоры на макроуровне. Возникает сила реакции опоры, параллельно на поверхности тела также возникает сила упругости в ответ на реакцию опоры– это и есть вес. Вес тела (W) векторно противоположно направлен силе реакции опоры.

Частные случаи, для всех их соблюдается равенство W= m(g-a) :

Подставка неподвижна в случае объекта на столе, либо равномерно движется с неизменной скоростью (a=0) В этом случае W=Fтяж.

Если опора ускоряется вниз, тогда и тело ускоряется вниз, тогда W меньше Fтяж и вес вовсе равен нулю, если ускорение равно ускорению свободного падения (при g=a, W=0) При этом присутствует проявление невесомости, опора движется с ускорением g и следовательно будут отсутствовать различные напряжения и деформации от приложенной извне контактно-механической силы. К невесомости, также можно прийти путем размещения тела в нейтральной точке между двумя одинаковыми гравитирующими массами или удалением объекта от источника гравитации.

Однородное гравитационное поле по своей сути не может вызывать «напряжений» в теле, так же как и тело двигаясь под действием Fтяж не будет чувствовать гравитационный разгон и остается невесомым, «стресс-свободным» телом. Вблизи же неоднородного поля (массивных астрономических объектов) свободно падающее тело будет ощущать на себе различные приливные силы и явление невесомости будет отсутствовать так как различные части тела будут неравномерно ускоряться и изменять свою форму.

Подставка с телом движутся вверх . Равнозначная всех сил будет направлена вверх следовательно Fреакции опоры будет больше Fтяж и W больше Fтяж и это состояние называется перегрузкой. Кратность перегрузки (К) – во сколько раз величина веса больше Fтяж. Эту величину учитывают, к примеру, при полетах в космос и военной авиации, так как в основном в этих сферах можно достичь значительных скоростей.

Перегрузка увеличивает нагрузку на органы человека, в основном больше всего нагружаются опорно двигательный аппарат и сердце, вследствие увеличения веса крови и внутренних органов. Перегрузка так же является направленной величиной и ее концентрацию в определенном направлении для организма нужно учитывать (кровь приливает к ногам или к голове и т.п.) Допустимые перегрузки до значения К не более десяти.

Ключевые отличия

  1. Эти силы приложены к неодинаковым «областям». Fтяж приложена к центру тяжести объекта, а вес приложен к опоре или подвесу.
  2. Отличие состоит и в физической сущности: сила тяжести – это гравитационная сила, вес же имеет электромагнитную природу. По сути тело не подверженное деформации со стороны внешних сил находится в невесомости.
  3. Fтяж и W могут отличаться как по количественному значению, так и по направленности, если ускорение тела не равно нулю, то Wтела либо больше, либо меньше силы тяжести, как в вышеуказанных случаях (если ускорение направлено под углом, то W направлен в сторону ускорения).
  4. Вес тела и сила тяжести на полюсах планеты и экваторе. На полюсе объект, лежащий на поверхности движется с ускорением а=0, так как находится на оси вращения, следовательно, Fтяж и W будут совпадать. На экваторе учитывая вращение с запада на восток, у тела появляется центростремительное ускорение и фокус всех сил по закону Ньютона будет устремлен к центру планеты, в сторону ускорения. Противопоставленная силе тяжести сила реакции опоры будет направлена так же к центру земли, но она будет меньше Fтяж и вес тела соответственно будет меньше Fтяж.

Заключение

В 20-м веке, понятия абсолютного пространства и времени были оспорены. Релятивистский подход поставил не только всех наблюдателей, но и перемещение или ускорение, на те же относительные основы. Это привело к неясности касательно того, что именно подразумевается под действием силы тяжести и веса. Шкалу в ускоряющемся лифте, например, нельзя отличить от масштаба в гравитационном поле.

Гравитационная сила и вес, таким образом, стали по существу зависимы от акта наблюдения и наблюдателя. Это вызвало отказ от концепции, как лишней в фундаментальных дисциплинах, таких как физика и химия. Тем не менее, представление остается важным в преподавании физики. Двусмысленность введенные относительности привели, начиная с 1960-х годов, к дискуссиям о том, как определить вес, выбирая между номинальным определением: сила, обусловленная действием силы тяжести или оперативного определения, определяемого напрямую актом взвешивания.