Большой геологический круговорот осуществляется в пределах. Большой геологический круговорот веществ. Круговорот элементов в неживой природе

Является выдающийся русский ученый академик В.И. Вернадский.

Биосфера — сложная наружная оболочка Земли, в которой содержится вся совокупность живых организмов и та часть вещества планеты, которая находится в процессе непрерывного обмена с этими организмами. Это одна из важнейших геосфер Земли, являющаяся основным компонентом природной среды, окружающей человека.

Земля состоит из концентрических оболочек (геосфер) как внутренних, так и внешних. К внутренним относятся ядро и мантия, а к внешним: литосфера - каменная оболочка Земли, включая земную кору (рис. 1) толщиной от 6 км (под океаном) до 80 км (горные системы); гидросфера - водная оболочка Земли; атмосфера — газовая оболочка Земли, состоящая из смеси различных газов, водяных паров и пыли.

На высоте от 10 до 50 км расположен слой озона, с максимальной его концентрацией на высоте 20-25 км, защищающий Землю от чрезмерного ультрафиолетового излучения, гибельного для организма. Сюда же (к внешним геосферам) относится и биосфера.

Биосфера - внешняя оболочка Земли, в которую входят часть атмосферы до высоты 25-30 км (до озонового слоя), практически вся гидросфера и верхняя часть литосферы примерно до глубины 3 км

Рис. 1. Схема строения земной коры

(рис. 2). Особенность этих частей состоит в том, что они населены живыми организмами, составляющими живое вещество планеты. Взаимодействие абиотической части биосферы — воздуха, воды, горных пород и органического вещества - биоты обусловило формирование почв и осадочных пород.

Рис. 2. Структура биосферы и соотношение поверхностей, занятых основными структурными единицами

Круговорот веществ в биосфере и экосистемах

Все доступные для живых организмов химические соединения в биосфере ограничены. Исчерпаемость пригодных для усвоения химических веществ часто тормозит развитие тех или иных групп организмов в локальных участках суши или океана. По выражению академика В.Р. Вильямса, единственный способ придать конечному свойства бесконечного состоит в том, чтобы заставить его вращаться по замкнутой кривой. Следовательно, устойчивость биосферы поддерживается благодаря круговороту веществ и потокам энергии. Имеются два основных круговорота веществ: большой — геологический и малый — биогеохимический.

Большой геологический круговорот (рис. 3). Кристаллические горные породы (магматические) под воздействием физических, химических и биологических факторов преобразуются в осадочные породы. Песок и глина — типичные осадки, продукты преобразования глубинных пород. Однако формирование осадков происходит не только за счет разрушения уже существующих пород, но также и путем синтеза биогенных минералов — скелетов микроорганизмов — из природных ресурсов — вод океана, морей и озер. Рыхлые водянистые осадки по мере их изоляции на дне водоемов новыми порциями осадочного материала, погружения на глубину, попадания в новые термодинамические условия (более высокие температуры и давления) теряют воду, отвердевают, преобразуясь при этом в осадочные горные породы.

В дальнейшем эти породы погружаются в еше более глубокие горизонты, где и протекают процессы их глубинного преобразования к новым температурным и барическим условиям, — происходят процессы метаморфизма.

Под воздействием потоков эндогенной энергии глубинные породы переплавляются, образуя магму — источник новых магматических пород. После поднятия этих пород на поверхность Земли, под действием процессов выветривания и переноса снова происходит их трансформация в новые осадочные породы.

Таким образом, большой круговорот обусловлен взаимодействием солнечной (экзогенной) энергии с глубинной (эндогенной) энергией Земли. Он перераспределяет вещества между биосферой и более глубокими горизонтами нашей планеты.

Рис. 3. Большой (геологический) круговорот веществ (тонкие стрелки) и изменение разнообразия в земной коре (сплошные широкие стрелки — рост, прерывистые — уменьшение разнообразия)

Большим круговоротом называется и круговорот воды между гидросферой, атмосферой и литосферой, который движется энергией Солнца. Вода испаряется с поверхности водоемов и суши и затем вновь поступает на Землю в виде осадков. Над океаном испарение превышает осадки, над сушей наоборот. Эти различия компенсируют речные стоки. В глобальном круговороте воды немаловажную роль играет растительность суши. Транспирация растений на отдельных участках земной поверхности может составить до 80-90% выпадающих здесь осадков, а в среднем по всем климатическим поясам — около 30%. В отличие от большого малый круговорот веществ происходит лишь в пределах биосферы. Взаимосвязь большого и малого круговорота воды показана на рис. 4.

Круговороты планетарного масштаба создаются из бесчисленных локальных циклических перемещений атомов, движимых жизнедеятельностью организмов в отдельных экосистемах, и тех перемещений, которые вызваны действием ландшафтных и геологических причин (поверхностный и подземный сток, ветровая эрозия, движение морского дна, вулканизм, горообразование и т.п.).

Рис. 4. Взаимосвязь большого геологического круговорота (БГК) воды с малым биогеохимическим круговоротом (МБК) воды

В отличие от энергии, которая однажды использована организмом, превращается в тепло и теряется, вещества в биосфере циркулируют, создавая биогеохимические круговороты. Из девяноста с лишним элементов, встречающихся в природе, живым организмам нужно около сорока. Наиболее важные для них требуются в больших количествах — углерод, водород, кислород, азот. Круговороты элементов и веществ осуществляются за счет саморегулирующих процессов, в которых участвуют все составные части . Эти процессы являются безотходными. Существует закон глобального замыкания биогеохимического круговорота в биосфере , действующий на всех этапах ее развития. В процессе эволюции биосферы увеличивается роль биологического компонента в замыкании биогеохимичес
кого круговорота. Еще большее влияние на биогеохимический круговорот оказывает Человек. Но его роль проявляется в противоположном направлении (круговороты становятся незамкнутыми). Основу биогеохимического круговорота вешеств составляют энергия Солнца и хлорофилл зеленых растений. Другие наиболее важные круговороты — воды, углерода, азота, фосфора и серы — связаны с биогеохимическим и способствуют ему.

Круговорот воды в биосфере

Растения используют водород воды при фотосинтезе в построении органических соединений, выделяя молекулярный кислород. В процессах дыхания всех живых существ, при окислении органических соединений вода образуется вновь. В истории жизни вся свободная вода гидросферы многократно прошла циклы разложения и новообразования в живом веществе планеты. В круговорот воды на Земле ежегодно вовлекается около 500 000 км 3 воды. Круговорот воды и ее запасы показаны на рис. 5 (в относительных величинах).

Круговорот кислорода в биосфере

Своей уникальной атмосферой с высоким содержанием свободного кислорода Земля обязана процессу фотосинтеза. С круговоротом кислорода тесно связано образование озона в высоких слоях атмосферы. Кислород освобождается из молекул воды и является по сути побочным продуктом фотосинтетической активности растений. Абиотическим путем кислород возникает в верхних слоях атмосферы за счет фотодиссоциации паров воды, но этот источник составляет лишь тысячные доли процента от поставляемых фотосинтезом. Между содержанием кислорода в атмосфере и гидросфере существует подвижное равновесие. В воде его примерно в 21 раз меньше.

Рис. 6. Схема круговорота кислорода: полужирные стрелки — основные потоки поступления и расхода кислорода

Выделившийся кислород интенсивно расходуется на процессы дыхания всех аэробных организмов и на окисление разнообразных минеральных соединений. Эти процессы происходят в атмосфере, почве, воде, илах и горных породах. Показано, что значительная часть кислорода, связанного в осадочных породах, имеет фотосинтетическое происхождение. Обменный фонд О, в атмосфере составляет не более 5% общей продукции фотосинтеза. Многие анаэробные бактерии также окисляют органические вещества в процессе анаэробного дыхания, используя для этого сульфаты или нитраты.

На полное разложение органического вещества, создаваемого растениями, требуется точно такое же количество кислорода, которое выделилось при фотосинтезе. Захоронение органики в осадочных породах, углях, торфах послужило основой поддержания обменного фонда кислорода в атмосфере. Весь имеющийся в ней кислород проходит полный цикл через живые организмы примерно за 2000 лет.

В настоящее время значительная часть кислорода атмосферы связывается в результате работы транспорта, промышленности и других форм антропогенной деятельности. Известно, что человечество тратит уже более 10 млрд т свободного кислорода из общего его количества в 430-470 млрд т, поставляемого процессами фотосинтеза. Если учесть, что в обменный фонд поступает лишь небольшая часть фотосинтетического кислорода, деятельность людей в этом отношении начинает приобретать угрожающие масштабы.

Круговорот кислорода теснейшим образом сопряжен с углеродным циклом.

Круговорот углерода в биосфере

Углерод как химический элемент является основой жизни. Он может разными способами соединяться со многими другими элементами, образуя простые и сложные органические молекулы, входящие в состав живых клеток. По распространению на планете углерод занимает одиннадцатое место (0,35% веса земной коры), но в живом веществе он в среднем составляет около 18 или 45% сухой биомассы.

В атмосфере углерод входит в состав углекислого газа С0 2 , в меньшей мере — в состав метана СН 4 . В гидросфере С0 2 растворен в воде, и общее его содержание намного превышает атмосферное. Океан служит мощным буфером регуляции СО 2 в атмосфере: при повышении в воздухе его концентрации увеличивается поглощение углекислого газа водой. Некоторая часть молекул С0 2 реагирует с водой, образуя угольную кислоту, которая затем диссоциирует на ионы НСО 3 - и СО 2- 3 " Эти ионы реагируют с катионами кальция или магния с выпадением в осадок карбонатов. Подобные реакции лежат в основе буферной системы океана, поддерживающей постоянство рН воды.

Углекислый газ атмосферы и гидросферы представляет собой обменный фонд в круговороте углерода, откуда его черпают наземные растения и водоросли. Фотосинтез лежит в основе всех биологических круговоротов на Земле. Высвобождение фиксированного углерода происходит в ходе дыхательной активности самих фотосинтезирующих организмов и всех гетеротрофов — бактерий, грибов, животных, включающихся в цепи питания за счет живого или мертвого органического вещества.

Рис. 7. Круговорот углерода

Особенно активно происходит возврат в атмосферу С0 2 из почвы, где сосредоточена деятельность многочисленных групп организмов, разлагающих остатки отмерших растений и животных и осуществляется дыхание корневых систем растений. Этот интегральный процесс обозначается как «почвенное дыхание» и вносит существенный вклад в пополнение обменного фонда С0 2 в воздухе. Параллельно с процессами минерализации органического вещества в почвах образуется гумус — богатый углеродом сложный и устойчивый молекулярный комплекс. Гумус почв является одним из важных резервуаров углерода на суше.

В условиях, где деятельность деструкторов тормозят факторы внешней среды (например, при возникновении анаэробного режима в почвах и на дне водоемов), органическое вещество, накопленное растительностью, не разлагается, превращаясь со временем в такие породы, как каменный или бурый уголь, торф, сапропели, горючие сланцы и другие, богатые накопленной солнечной энергией. Они пополняют собой резервный фонд углерода, надолго выключаясь из биологического круговорота. Углерод временно депонируется также в живой биомассе, в мертвом опаде, в растворенном органическом веществе океана и т.п. Однако основным резервным фондом углерода на пишете являются не живые организмы и не горючие ископаемые, а осадочные породы — известняки и доломиты. Их образование также связано с деятельностью живого вещества. Углерод этих карбонатов надолго захоронен в недрах Земли и поступает в круговорот лишь в ходе эрозии при обнажении пород в тектонических циклах.

В биогеохимическом круговороте участвуют лишь доли процента углерода от общего его количества на Земле. Углерод атмосферы и гидросферы многократно проходит через живые организмы. Растения суши способны исчерпать его запасы в воздухе за 4-5 лет, запасы в почвенном гумусе — за 300-400 лет. Основной возврат углерода в обменный фонд происходит за счет деятельности живых организмов, и лишь небольшая его часть (тысячные доли процента) компенсируется выделением из недр Земли в составе вулканических газов.

В настоящее время мощным фактором перевода углерода из резервного в обменный фонд биосферы становится добыча и сжигание огромных запасов горючих ископаемых.

Круговорот азота в биосфере

В атмосфере и живом веществе содержится менее 2% всего азота на Земле, но именно он поддерживает жизнь на планете. Азот входит в состав важнейших органических молекул — ДНК, белков, липопротеидов, АТФ, хлорофилла и др. В растительных тканях его соотношение с углеродом составляет в среднем 1: 30, а в морских водорослях I: 6. Биологический цикл азота поэтому также тесно связан с углеродным.

Молекулярный азот атмосферы недоступен растениям, которые могут усваивать этот элемент только в виде ионов аммония, нитратов или из почвенных или водных растворов. Поэтому недостаток азота часто является фактором, лимитирующим первичную продукцию — работу организмов, связанную с созданием органических веществ из неорганических. Тем не менее атмосферный азот широко вовлекается в биологический круговорот благодаря деятельности особых бактерий (азотфиксаторов).

В круговороте азота большое участие также принимают аммонифицирующие микроорганизмы. Они разлагают белки и другие содержащие азот органические вещества до аммиака. В аммонийной форме азот частью вновь поглощается корнями растений, а частью перехватывается нитрифицирующими микроорганизмами, что противоположно функциям группы микроорганизмов — денитрификаторов.

Рис. 8. Круговорот азота

В анаэробных условиях в почвах или водах они используют кислород нитратов для окисления органических веществ, получая энергию для своей жизнедеятельности. Азот при этом восстанавливается до молекулярного. Азотфиксация и денитрификация в природе приблизительно уравновешены. Цикл азота, таким образом, зависит преимущественно от деятельности бактерий, тогда как растения встраиваются в него, используя промежуточные продукты этого цикла и намного увеличивая масштабы циркуляции азота в биосфере за счет продуцирования биомассы.

Роль бактерий в круговороте азота настолько велика, что если уничтожить только 20 их видов, жизнь на нашей планете прекратится.

Небиологическая фиксация азота и поступление в почвы его окислов и аммиака происходит также с дождевыми осадками при ионизации атмосферы и грозовых разрядах. Современная промышленность удобрений фиксирует азот атмосферы в размерах, превышающих природную фиксацию азота, в целях увеличения продукции сельскохозяйственных растений.

В настоящее время деятельность человека все сильнее влияет на круговорот азота, в основном в сторону превышения перевода его в связанные формы над процессами возврата в молекулярное состояние.

Круговорот фосфора в биосфере

Этот элемент, необходимый для синтеза многих органических веществ, включая АТФ, ДНК, РНК, усваивается растениями только в виде ионов ортофосфорной кислоты (Р0 3 4 +). Он относится к элементам, лимитирующим первичную продукцию и на суше, и особенно в океане, поскольку обменный фонд фосфора в почвах и водах невелик. Круговорот этого элемента в масштабах биосферы незамкнут.

На суше растения черпают из почвы фосфаты, освобожденные редуцентами из разлагающихся органических остатков. Однако в щелочной или кислой почве растворимость фосфорных соединений резко падает. Основной резервный фонд фосфатов содержится в горных породах, созданных на дне океана в геологическом прошлом. В ходе выщелачивания пород часть этих запасов переходит в почву и в виде взвесей и растворов вымывается в водоемы. В гидросфере фосфаты используются фитопланктоном, переходя по цепям питания в другие гидробионты. Однако в океане большая часть фосфорных соединений захоранивается с остатками животных и растений на дне с последующим переходом с осадочными породами в большой геологический круговорот. На глубине растворенные фосфаты связываются с кальцием, образуя фосфориты и апатиты. В биосфере, по сути, происходит однонаправленный поток фосфора из горных пород суши в глубины океана, следовательно, обменный фонд его в гидросфере очень ограничен.

Рис. 9. Круговорот фосфора

Наземные залежи фосфоритов и апатитов используются при производстве удобрений. Попадание фосфора в пресные водоемы является одной из главных причин их «цветения».

Круговорот серы в биосфере

Круговорот серы, необходимой для построения ряда аминокислот, отвечает за трехмерную структуру белков, поддерживается в биосфере широким спектром бактерий. В отдельных звеньях этого цикла участвуют аэробные микроорганизмы, окисляющие серу органических остатков до сульфатов, а также анаэробные редукторы сульфата, восстанавливающие сульфаты до сероводорода. Кроме перечисленных группы серобактерий окисляют сероводород до элементарной серы и далее до сульфатов. Растения усваивают из почвы и воды только ионы SO 2- 4 .

Кольцо в центре иллюстрирует процесс окисления (О) и восстановления (R), благодаря которым происходит обмен серы между фондом доступного сульфата и фондом сульфидов железа, находящимся глубоко в почве и осадках.

Рис. 10. Круговорот серы. Кольцо в центре иллюстрирует процесс окисления (0) и восстановления (R), благодаря которым происходит обмен серы между фондом доступного сульфата и фондом сульфидов железа, находящимся глубоко в почве и осадках

Основное накопление серы происходит в океане, куда ионы сульфатов непрерывно поступают с суши с речным стоком. При выделении из вод сероводорода сера частично возвращается в атмосферу, где окисляется до диоксида, превращаясь в дождевой воде в серную кислоту. Промышленное использование большого количества сульфатов и элементарной серы и сжигание горючих ископаемых поставляют в атмосферу большие объемы диоксида серы. Это вредит растительности, животным, людям и служит источником кислотных дождей, усугубляющих отрицательные эффекты вмешательства человека в круговорот серы.

Скорость круговорота веществ

Все круговороты веществ происходят с различной скоростью (рис. 11)

Таким образом, круговороты всех биогенных элементов на планете поддерживаются сложным взаимодействием разных частей . Они формируются деятельностью разных по функциям групп организмов, системой стока и испарения, связывающих океан и сушу, процессами циркуляции вод и воздушных масс, действием сил гравитации, тектоникой литосферных плит и другими масштабными геологическими и геофизическими процессами.

Биосфера действует как единая сложная система, в которой происходят различные круговороты веществ. Главным двигателем этихкруговоротов является живое вещество планеты, все живые организмы, обеспечивающие процессы синтеза, трансформации и разложения органического вещества.

Рис. 11. Темпы циркуляции веществ (П. Клауд, А. Джибор, 1972)

В основе экологического взгляда на мир лежит представление о том, что каждое живое существо окружено множеством влияющих на него различных факторов, образующих в комплексе его место обитания — биотоп. Следовательно, биотоп — участок территории, однородный по условиям жизни для определенных видов растений или животных (склон оврага, городской лесопарк, небольшое озеро или часть большого, но с однородными условиями — прибрежная часть, глубоководная часть).

Организмы, характерные для определенного биотопа, составляют жизненное сообщество, или биоценоз (животные, растения и микроорганизмы озера, луга, береговой полосы).

Жизненное сообщество (биоценоз) образует со своим биотопом единое целое, которое называется экологической системой (экосистемой). Примером естественных экосистем могут служить муравейник, озеро, пруд, луг, лес, город, ферма. Классическим примером искусственной экосистемы является космический корабль. Как видно, здесь нет строгой пространственной структуры. Близким к понятию экосистемы является понятие биогеоценоза.

Основными компонентами экосистем являются:

  • неживая (абиотическая) среда. Это вода, минеральные вещества, газы, а также органические вещества и гумус;
  • биотические компоненты. К ним относятся: продуценты или производители (зеленые растения), консументы, или потребители (живые существа, питающиеся продуцентами), и редуценты, или разлагатели (микроорганизмы).

Природа действует в высшей степени экономно. Так, созданная организмами биомасса (вещество тел организмов) и содержащаяся в них энергия передаются другим членам экосистемы: животные поедают растения, этих животных поедают другие животные. Этот процесс называют пищевой, или трофической, цепью. В природе пищевые цепи зачастую перекрещиваются, образуя пищевую сеть.

Примеры пищевых цепей: растение — растительноядное животное — хищник; злак — полевая мышь — лиса и др. и пищевая сеть показаны на рис. 12.

Таким образом, состояние равновесия в биосфере основано на взаимодействии биотических и абиотических факторов среды, которое поддерживается благодаря непрерывному обмену веществом и энергией между всеми компонентами экосистем.

В замкнутых круговоротах естественных экосистем наряду с другими обязательно участие двух факторов: наличие редуцентов и постоянное поступление солнечной энергии. В городских и искусственных экосистемах мало или совсем нет редуцентов, поэтому жидкие, твердые и газообразные отходы накапливаются, загрязняя окружающую среду.

Рис. 12. Пищевая сеть и направление потока вещества

Все вещества на планете находятся в процессе круговорота. Солнечная энергия вызывает на Земле два круговорота веществ: большой (геологический, биосферный) и малый (биологический).

Большой круговорот веществ в биосфере характеризуется двумя важными моментами: он осуществляется на протяжении всего геологического развития Земли и представляет собой современный планетарный процесс, принимающий ведущее участие в дальнейшем развитии биосферы.

Геологический круговорот связан с образованием и разрушением горных пород и последующим перемещением продуктов разрушения - обломочного материала и химических элементов. Значительную роль в этих процессах играли и продолжают играть термические свойства поверхности суши и воды: поглощение и отражение солнечных лучей, теплопроводность и теплоемкость. Неустойчивый гидротермический режим поверхности Земли вместе с планетарной системой циркуляции атмосферы обусловливал геологический круговорот веществ, который на начальном этапе развития Земли, наряду с эндогенными процессами, был связан с формированием континентов, океанов и современных геосфер. Со становлением биосферы в большой круговорот включились продукты жизнедеятельности организмов. Геологический круговорот поставляет живым организмам элементы питания и во многом определяет условия их существования.

Главные химические элементы литосферы: кислород, кремний, алюминий, железо, магний, натрий, калий и другие - участвуют в большом круговороте, проходя от глубинных частей верхней мантии до поверхности литосферы. Магматическая порода, возникшая при кристаллизации

магмы, поступив на поверхность литосферы из глубин Земли, подвергается разложению, выветриванию в области биосферы. Продукты выветривания переходят в подвижное состояние, сносятся водами, ветром в пониженные места рельефа, попадают в реки, океан и образуют мощные толщи осадочных пород, которые со временем, погружаясь на глубину в областях с повышенной температурой и давлением, подвергаются метаморфозу, т. е. «переплавляются». При этой переплавке возникает новая метаморфическая порода, поступающая в верхние горизонты земной коры и вновь входящая в круговорот веществ (рис. 32).

Рис. 32. Геологический (большой) круговорот веществ

Наиболее интенсивному и быстрому круговороту подвергаются легкоподвижные вещества - газы и природные воды, составляющие атмосферу и гидросферу планеты. Значительно медленнее совершает круговорот материал литосферы. В целом каждый круговорот любого химического элемента является частью общего большого круговорота веществ на Земле, и все они тесно связаны между собой. Живое вещество биосферы в этом круговороте выполняет огромную работу по перераспределению химических элементов, беспрерывно циркулирующих в биосфере, переходя из внешней среды в организмы и снова во внешнюю среду.


Малый, или биологический, круговорот веществ - это

циркуляция веществ между растениями, животными, грибами, микроорганизмами и почвой. Суть биологического круговорота заключается в протекании двух противоположных, но взаимосвязанных процессов - создания органических веществ и их разрушения. Начальный этап возникновения органических веществ обусловлен фотосинтезом зеленых растений, т. е. образованием живого вещества из углекислого газа, воды и простых минеральных соединений с использованием энергии Солнца. Растения (продуценты) извлекают из почвы в растворе молекулы серы, фосфора, кальция, калия, магния, марганца, кремния, алюминия, цинка, меди и других элементов. Растительноядные животные (консументы I порядка) поглощают соединения этих элементов уже в виде пищи растительного происхождения. Хищники (консументы II порядка) питаются растительноядными животными, потребляя пищу более сложного состава, включающую белки, жиры, аминокислоты и другие вещества. В процессе разрушения микроорганизмами (редуцентами) органических веществ отмерших растений и останков животных, в почву и водную среду поступают простые минеральные соединения, доступные для усвоения растениям, и начинается следующий виток биологического круговорота (рис. 33).

В биосфере происходит глобальный (большой, или геологический) круговорот веществ, который существовал и до появления первых живых организмов. В него вовлечены самые разнообразные химические элементы. Геологический круговорот осуществляется благодаря солнечной, гравитационной, тектонической и космической видам энергии.

С появлением живого вещества на основе геологического круговорота возник круговорот органического вещества – малый (биотический, или биологический) круговорот.

Биотический круговорот веществ– непрерывный, циклический, неравномерный во времени и пространстве процесс перемещения и превращения веществ, происходящий при непосредственном участии живых организмов. Он представляет собой непрерывный процесс создания и разрушения органического вещества и реализуется при участии всех трех групп организмов: продуцентов, консументов и редуцентов. В биотические круговороты вовлечено около 40 биогенных элементов. Наибольшее значение для живых организмов имеют круговороты углерода, водорода, кислорода, азота, фосфора, серы, железа, калия, кальция и магния.

По мере развития живой материи из геологического круговорота постоянно извлекается все больше элементов, которые вступают в новый, биологический круговорот. Общая масса зольных веществ, вовлекаемая ежегодно в биотический круговорот веществ только на суше, составляет около 8 млрд. тонн. Это в несколько раз превышает массу продуктов извержения всех вулканов мира на протяжении года. Скорость круговорота вещества в биосфере различна. Живое вещество биосферы обновляется в среднем за 8 лет, масса фитопланктона в океане обновляется ежедневно. Весь кислород биосферы проходит через живое вещество за 2000 лет, а углекислый газ – за 300 лет.

В экосистемах осуществляются локальные биотические круговороты, а в биосфере – биогеохимические циклы миграции атомов, которые не только связывают все три наружные оболочки планеты в единое целое, но и обуславливают непрерывную эволюцию её состава.

АТМОСФЕРА ГИДРОСФЕРА

­ ¯ ­ ¯

ЖИВОЕ ВЕЩЕСТВО

ПОЧВА

Эволюция биосферы

Биосфера появилась с зарождением первых живых организмов примерно 3,5 млрд. лет назад. В ходе развития жизни она изменялась. Этапы эволюции биосферы можно выделить с учетом характеристики типа экосистем.

1. Возникновение и развитие жизни в воде. Этап связан с существованием водных экосистем. Кислород в атмосфере отсутствовал.



2. Выход живых организмов на сушу, освоение наземно-воздушной среды и почвы и появление наземных экосистем. Это стало возможно благодаря появлению кислорода в атмосфере и озонового экрана. Произошло 2,5 млрд. лет назад.

3. Появление человека, превращение его в биосоциальное существо и возникновение антропоэкосистем произошло 1 млн. лет назад.

4. Переход биосферы под влиянием разумной деятельности человека в новое качественное состояние – в ноосферу.


Ноосфера

Высшим этапом развития биосферы является ноосфера – этап разумного регулирования взаимоотношений между человеком и природой. Этот термин ввел в 1927 году французский философ Э. Леруа. Он считал, что ноосфера включает человеческое общество с его индустрией, языком и прочими атрибутами разумной деятельности. В 30-40-х гг. ХХ века В.И. Вернадский развил материалистические представления о ноосфере. Он считал, что ноосфера возникает в результате взаимодействия биосферы и общества, управляется за счет тесной взаимосвязи законов природы, мышления и социально-экономических законов общества, и подчеркивал, что

ноосфера (сфера разума) – стадия развития биосферы, когда разумная деятельность людей станет главным, определяющим фактором ее устойчивого развития.

Ноосфера – новая, высшая стадия биосферы, связанная с возникновением и развитием в ней человечества, которое, познавая законы природы и совершенствуя технику, становится крупнейшей силой, сопоставимой по масштабам с геологическими, и начинает оказывать определяющее влияние на ход процессов на Земле, глубоко изменяя ее своим трудом. Становление и развитие человечества выразилось в возникновении новых форм обмена веществом и энергией между обществом и природой, во все возрастающем воздействии человека на биосферу. Ноосфера наступит тогда, когда человечество с помощью науки сможет осмысленно управлять природными и социальными процессами. Поэтому нельзя ноосферу считать особой оболочкой Земли.



Науку управления взаимоотношениями между человеческим обществом и природой называют ноогеникой.

Основная цель ноогеники – планирование настоящего во имя будущего, а её главные задачи – исправление нарушений в отношениях человека и природы, вызванных прогрессом техники, сознательное управление эволюцией биосферы. Должно сформироваться плановое, научно обоснованное использование природных ресурсов, предусматривающее восстановление в круговороте веществ того, что нарушил человек, в противоположность стихийному, хищническому отношению к природе, приводящему к ухудшению окружающей среды. Для этого необходимо устойчивое развитие общества, которое удовлетворяет потребности настоящего времени и не ставит под угрозу способность будущих поколений удовлетворять свои потребности.

В настоящее время на планете сформировалась биотехносфера – часть биосферы, коренным образом преобразованная человеком в инженерно-технические сооружения: города, заводы и фабрики, карьеры и шахты, дороги, плотины и водохранилища и т.п.

БИОСФЕРА И ЧЕЛОВЕК

Биосфера для человека является и средой обитания, и источником природных ресурсов.

Природные ресурсы природные объекты и явления, которые человек использует в процессе труда. Они обеспечивают человеку пищу, одежду, жилище. По степени истощения они делятся на исчерпаемые и неисчерпаемые . Исчерпаемые ресурсы подразделяются на возобновимые и невозобновимые . К невозобновимым относят те ресурсы, которые не возрождаются (или возобновляются в сотни раз медленнее, чем расходуются): нефть, каменный уголь, металлические руды и большинство полезных ископаемых. Возобновимые природные ресурсы – почва, растительный и животный мир, минеральное сырьё (поваренная соль). Эти ресурсы постоянно восстанавливаются с разной скоростью: животные – несколько лет, леса – 60-80 лет, почвы, потерявшие плодородие, – в течение нескольких тысячелетий. Превышение темпов расходования над скоростью воспроизводства ведет к полному исчезновению ресурса.

Неисчерпаемые ресурсы включают водные, климатические (атмосферный воздух и энергия ветра) и космические: солнечная радиация, энергия морских приливов и отливов. Однако растущее загрязнение окружающей среды требует осуществления природоохранных мероприятий для сохранения этих ресурсов.

Удовлетворение человеческих потребностей немыслимо без эксплуатации природных ресурсов.

Все виды деятельности человека в биосфере можно объединить в четыре формы.

1. Изменение структуры земной поверхности (распашка земель, осушение водоемов, вырубка лесов, строительство каналов). Человечество становится мощной геологической силой. Человек использует 75% суши, 15% речных вод, каждую минуту вырубается 20 га лесов.

· Геолого-геоморфологические изменения – интенсификация процессов образования оврагов, появление и учащение селей и оползней.

· Комплексные (ландшафтные) изменения – нарушение целостности и естественной структуры ландшафтов, уникальности памятников природы, потеря продуктивных земель, опустынивание.

Трофическая сеть

Обычно для каждого звена цепи можно указать не одно, а несколько других звеньев, связанных с ним отношением «пища - потребитель». Так, траву едят не только коровы, но и другие животные, а коровы являются пищей не только для человека. Установление таких связей превращает пищевую цепь в более сложную структуру - трофическую сеть .

Трофический уровень

Трофический уровень - условная единица, обозначающая удалённость от продуцентов в трофической цепи данной экосистемы. В некоторых случаях в трофической сети можно сгруппировать отдельные звенья по уровням таким образом, что звенья одного уровня выступают для следующего уровня только в качестве пищи. Такая группировка называется трофическим уровнем.

Круговорот веществ и потоки энергии в экосистемах

Питание - основной способ движения веществ и энергии. Организмы в экосистеме связаны общностью энергии и питательных веществ, которые необходимы для поддержания жизни. Главным источником энергии для подавляющего большинства живых организмов на Земле является Солнце. Фотосинтезирующие организмы (зеленые растения, цианобактерии, некоторые бактерии) непосредственно используют энергию солнечного света. При этом из углекислого газа и воды образуются сложные органические вещества, в которых часть солнечной энергии накапливается в форме химической энергии. Органические вещества служат источником энергии не только для самого растения, но и для других организмов экосистемы. Высвобождение заключенной в пище энергии происходит в процессе дыхания. Продукты дыхания - углекислый газ, вода и неорганические вещества - могут вновь использоваться зелеными растениями. В итоге вещества в данной экосистеме совершают бесконечный круговорот. При этом энергия, заключенная в пище, не совершает круговорот, а постепенно превращается в тепловую энергию и уходит из экосистемы. Поэтому необходимым условием существования экосистемы является постоянный приток энергии извне. Таким образом, основу экосистемы составляют автотрофные организмы - продуценты (производители, созидатели), которые в процессе фотосинтеза создают богатую энергией пищу - первичное органическое вещество. В наземных экосистемах наиболее важная роль принадлежит высшим растениям, которые, образуя органические вещества, дают начало всем трофическим связям в экосистеме, служат субстратом для многих животных, грибов и микроорганизмов, активно влияют на микроклимат биотопа. В водных экосистемах главными производителями первичного органического вещества являются водоросли. Готовые органические вещества используют для получения и накопление энергии гетеротрофы, или консументы (потребители). К гетеротрофам относятся растительноядные животные (консументы I Порядка), плотоядные, живущие за счет растительноядных форм (консументы II порядка), потребляющие других плотоядных (консументы Ш порядка) и т. д. Особую группу консументов составляют редуценты (разрушители, или деструкторы), разлагающие органические остатки продуцентов и консументов до простых неорганических соединений, которые зат-ем используются продуцентами. К редуцентам относятся главным образом микрорганизмы - бактерии и грибы. В наземных экосистемах особенно важное значение имеют почвенные редуценты, вовлекающие в общий круговорот органические вещества отмерших растений (они потребляют до 90% первичной продукции леса). Таким образом, каждый живой организм в составе экосистемы занимает определенную экологическую нишу (место) в сложной системе экологических взаимоотношений с другими организмами и абиотическими условиями среды.

Биологический и геологический круговороты.

Процессы фотосинтеза органического вещества из неорганических компонентов продолжается миллионы лет, и за такое время химические элементы должны были перейти из одной формы в другую. Однако этого не происходит благодаря их круговороту в биосфере. Ежегодно фотосинтезирующие организмы усваивают около 350 млрд т углекислого газа, выделяют в атмосферу около 250 млрд т кислорода и расщепляют 140 млрд т воды, образуя более 230 млрд т органического вещества (в пересчёте на сухой вес). Громадные количества воды проходят через растения и водоросли в процессе обеспечения транспортной функции и испарения. Это приводит к тому, что вода поверхностного слоя океана фильтруется планктоном за 40 дней, а вся остальная вода океана – приблизительно за год. Весь углекислый газ атмосферы обновляется за несколько сотен лет, а кислород за несколько тысяч лет. Ежегодно фотосинтезом в круговорот включается 6 млрд т азота, 210 млрд т фосфора и большое количество других элементов (калий, натрий, кальций, магний, сера, железо и др.). Существование этих круговоротов придаёт экосистеме определённую устойчивость.

Различают два основных круговорота: большой (геологический) и малый (биотический). Большой круговорот, продолжающийся миллионы лет, заключается в том, что горные породы подвергаются разрушению, а продукты выветривания (в том числе растворимые в воде питательные вещества) сносятся потоками воды в Мировой океан, где они образуют морские напластования и лишь частично возвращаются на сушу с осадками. Геотектонические изменения, процессы опускания материков и поднятия морского дна, перемещения морей и океанов в течение длительного времени приводят к тому, что эти напластования возвращаются на сушу и процесс начинается вновь. Малый круговорот (часть большого) происходит на уровне экосистемы и состоит в том, что питательные вещества, вода и углерод аккумулируются в веществе растений, расходуются на построение тела и на жизненные процессы как самих этих растений, так и других организмов (как правило животных), которые поедают эти растения (консументы). Продукты распада органического вещества под действием деструкторов и микроорганизмов (бактерии, грибы, черви) вновь разлагаются до минеральных компонентов, доступных растениям и вовлекаемых ими в потоки вещества. Круговорот химических веществ из неорганической среды через растительные и животные организмы обратно в неорганическую среду с использованием солнечной энергии и энергии химических реакций называется биогеохимическим циклом. В такие циклы вовлечены практически все химические элементы и прежде всего те, которые участвуют в построении живой клетки. Так, тело человека состоит из кислорода (62,8%), углерода (19,37%), водорода (9,31%), азота (5,14%), кальция (1,38%), фосфора (0,64%) и ещё примерно из 30 элементов.

Роль Человека.

Человеку подвластно менять силу действия и число лимитирующих факторов, а также расширять или, наоборот, сужать границы оптимальных значений факторов среды. Например, снятие урожая неизбежно связано с обеднением почв элементами минерального питания растений и переводом некоторых из них в категорию лимитирующих факторов. Различного рода мелиорации земель (обводнение, осушение, внесение удобрений и т. п.) оптимизируют факторы, снимают их лимитирующий эффект. Человек неизмеримо расширил свои адаптационные возможности за счет кондиционирования условий своей среды (одежда, жилище, новые материалы и т.п.) и тем самым резко уменьшил зависимость от природной среды и представляемых ею ресурсов. Например, в рационе человека пищевые ресурсы дикой природы составляют только 10-15%. Остальные пищевые потребности удовлетворяются за счет культурного хозяйства. Следствием уменьшения зависимости от факторов среды является расширение человеком своего ареала на всю планету и снятие естественных механизмов регулирования численности популяции.

Человек изменил этому принципу цепей питания и экологических пирамид по отношению, как к своей популяции, так и к другим видам (сортам, породам), особенно выращиваемым в культурном хозяйстве. Такое несоответствие природным экосистемам стало возможным благодаря присвоению и вложению в системы дополнительной энергии. Нарушение правил экологических пирамид оказывается неоправданно дорогим. Оно неизбежно сопровождается изменениями в круговоротах веществ, накоплением отходов и загрязнением среды. В качестве примера можно назвать животноводческие комплексы с их экологическими проблемами. Нарушение правил пирамид обусловливается также тем, что потребительские интересы человека вышли за пределы биологических ресурсов в целом. В круг его интересов включаются продукты (ресурсы) прежних геологических эпох, а многие из производимых продуктов становятся тупиковым звеном (отходами и загрязнителями). Людям Земли только как биологическому виду ежедневно требуется около 2 млн. т пищи, 10 млрд. м3 кислорода. Помимо этого, добывается и перерабатывается почти 30 млн. т веществ, сжигается около 30 млн. т топлива, используется 2 млрд. м3 воды и 65 млрд. м3 кислорода для технических нужд

В силу своей всеядности люди начинают поедать все более разнообразные организмы, для чего необходимы самые различные способы отлова добычи или поиска растений. Конечно, приходится также придумывать способы, как сделать добычу съедобной. Одно дело - изжарить кролика и совсем другое - приготовить на обед медузу. Только изощренный ум мог додуматься употребить в пищу, например, маниок, клубни которого горьки, да еще содержат синильную кислоту. Однако по всей Бразилии, да и не только там, маниок выращивают и поедают в количествах, сравнимых с поеданием в России картофеля. А ведь придумать технологию его обработки было весьма сложным делом.

Поедая самые различные организмы, человек включается во множество цепей питания, изымая дополнительную органику и заканчивая эти цепи собой. Он везде оказывается хищником высшего порядка. Так человек стал укорачивать цепи питания во множестве экосистем, а чем короче такая цепь, тем быстрее оборот вещества и энергии.

Также деятельность человека связана с сильным преобразованием естественных местообитаний. Современный человек предпочитает не изменяться в соответствии с условиями среды, а изменять сами эти условия. Поэтому он тратит значительные интеллектуальные и технические усилия на преобразование окружающей среды. Вспахав пространство луга и засеяв его нужными растениями, пахарь уже кардинально изменил среду. От множества растений луга он оставил одно, да и то чаще всего здесь чужое. Почву и ее фауну, сформированные здесь за много сотен лет, он преобразовал в несколько часов. В итоге ликвидирован ресурс практически всех видов животных, их кормовые растения исчезли. Преобразованное пространство стало непригодным для многих местных растений, а для других - недостижимо. Хозяин посева оберегает свое поле, поливает его гербицидами, сражается с потребителями-конкурентами.

Как мы помним, в экосистемах человек обитает не один, а с огромным количеством соседей - растительных и животных организмов. Далеко не всем им подходит эта преобразованная среда. Многие, особенно примитивные формы жизни, легко приспосабливаются к изменившимся условиям. Подавляющему же числу сложных организмов новая среда не годится. Они покидают эти места или погибают. Так что любое преобразование природы всегда приводит к гибели множества организмов .

Поедание . Диапазон кормов этого зоологического вида, наверное, самый широкий на планете. Человек - удивительный эврифаг (многояд) и ест практически все. Огромен перечень животных в его меню, куда наряду с традиционными коровами, овцами и домашней птицей входят термиты, саранча, кивсяки и сколопендры, некоторые пауки. Как лакомство поедаются многими народами личинки различных насекомых - пчел, древесных жуков. Жители Африки с аппетитом поедают громадных личинок жука голиафа, там, где он водится. Разнообразные ящерицы, змеи, черепахи и лягушки тоже прочно вошли в рационы людей. Обитатели воды - рыбы и моллюски - это традиционная пища еще со времен кроманьонца. Однако и здесь рацион вида расширился, включив огромную массу животных от китов до некоторых медуз и эвфаузид.

Экологи, исследуя рационы животных, особенно тех, что являются пищевыми конкурентами человека, отмечают у многих из них поразительную разноядность. Например, типичный полифаг, водяная полевка, уничтожающая посевы крестьян в южной части Западной Сибири, способна поедать более 300 видов растений. По мере изучения этого зверька составляются все более длинные списки пригодных для него кормов. Человек же в роли растительноядного животного (первичного консумента) далеко превзошел все прочие виды. Полных списков его пищевых растений на планете пока никто не составлял, но длину их нетрудно предположить. Так, в японской кухне используются для приготовления различных блюд бутоны цветков около 300 видов растений. Китайская же кухня еще более изощренна и разнообразна. А если добавить сюда списки пищевых видов растений из поваренных книг жителей тропической зоны!?

И животных, и растения человек использует в пищевых целях со все возрастающей интенсивностью. Если он не ест каких-то животных непосредственно, то скармливает их своим кормовым животным или удобряет ими поля. Человек расточителен и часто даже деликатесные виды наряду с питанием пускает как кормовые, а то и как удобрения. Например, история промысла морского полосатого окуня - рыбы почти 2-метровой длины и 50 - 70 кг веса. По вкусовым качествам она превосходит атлантического лосося. Этот окунь добывался в начале XVII века у берегов Новой Англии в огромных количествах. Большая часть таких уловов шла на удобрение земельных участков местных жителей. Колонисты фермеры сотни тонн этой рыбы закапывали в свои кукурузные поля. В районе Ньюфаундленда многие тонны атлантического лосося в начале XIX века использовали для удобрения полей. То же происходило при избыточном лове трески и осетра. Построены громадные заводы для переработки на удобрения и корма для животных макрели, сельди, мойвы и других морских рыб. В Ньюфаундленде в начале XVIII века мясо громадных морских раков омаров (они весили до 10 - 12 кг) использовали для наживки при лове трески, а также для откорма домашних животных. Каждое картофельное поле было усеяно панцирями этих ракообразных, ибо для удобрения под каждый картофельный куст закладывали по 2 - 3 омара. До середины XX столетия этими гигантскими и очень вкусными раками откармливали скот в некоторых районах Ньюфаундленда. Даже такая просвещенная страна, как Россия, до самого конца XX века поступала расточительно. В 1998 году по телевизору не очень сытому ее населению показывали, как на российском Дальнем Востоке бульдозерами зарывали в землю сотни тонн деликатесных лососевых рыб. Люди не смогли утилизировать свои уловы!

Человек обеспечил свое превращение в гиперэврибионта не за счет биологических механизмов, а за счет технических средств, и поэтому он в значительной мере утратил потенциал биологических адаптации. В этом причина того, что человек находится в числе первых кандидатов на уход с арены жизни в результате им же вызываемых изменений среды. Отсюда важный вывод: если современная ниша человека прежде всего результат разумной деятельности, власти над окружением, следовательно, разум должен выступать основной движущей силой ее изменения.

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-26

Большой геологический круговорот веществ. Малый биологический (географический) круговорот веществ

Большой геологический круговорот веществ обусловлен взаимодействием солнечной энергии с глубинной энергий Земли и осуществляет перераспределение веществ между биосферой и более глубокими горизонтами Земли. Осадочные горные породы погружаются в зону высоких температур и давления в подвижных зонах земной коры. Там они переплавляются и образуют магму - источник новых магматических пород. После поднятия этих пород на земную поверхность и действия процессов выветривания вновь происходит трансформация их в новые осадочные породы.

Большой круговорот включает также и круговорот воды между сушей и океаном через атмосферу. Влага, испарившаяся с поверхности с поверхности мирового океана, переносится на сушу, куда выпадает в виде осадков, которые вновь в океан в виде поверхностного стока и подземного. Круговорот воды происходит и по более простой схеме: испарение влаги с поверхности океана - конденсация водяного пара - выпадение осадков на поверхность океана. В круговороте воды ежедневно участвует более 500 тыс. куб. км. воды. Весь запас воды на Земле распадается и восстанавливается за 2 млн. лет.

Малый круговорот веществ (биогеохимический) совершается лишь в пределах биосферы. Сущность его заключается в образовании живого вещества из неорганических соединений в процессе фотосинтеза и в превращении органического вещества при разложении вновь в неорганические соединения. Этот круговорот для жизни биосферы - главный и является продолжением самой жизни. Изменяясь, рождаясь и умирая, живое вещество поддерживает жизнь на нашей планете, обеспечивая биогеохимический круговорот веществ. Главным источником энергии круговорота является солнечный свет, который обеспечивает фотосинтез.

Суть биогеохимического цикла заключается в том, что химические элементы, поглощенные организмом, в последствии его покидают и уходят в абиотическую среду, через некоторое время они вновь попадают в живой организм. В биогеохимических круговоротах принято различать резервный фонд, или вещества, несвязанные с организмами; обменный фонд, обусловленный прямым обменом биогенными веществами между организмами и их непосредственным окружением. Если же рассматривать биосферу в целом, то можно выделить круговорот газообразных веществ с резервным фондом в атмосфере и гидросфере и осадочный цикл с резервным фондом в земной коре в геологическом круговороте.

Круговороты целом обеспечивают выполнение следующих важнейших функций живого вещества в биосфере:

  • o Газовую: продукт разложения отмершей органики.
  • o Концентрационную: организмы накапливают многие химические элементы.
  • o Окислительно-восстановительную: организмы обитающие в водоемах, регулируют кислотный режим.
  • o Биохимическую: размножение, рост и перемещение в пространстве живого вещества
  • o Биогеохимическую деятельность человека: вовлечение природных веществ для хозяйственный и бытовых нужд человека.

Единственным на Земле процессом, который не расходует, а накапливает солнечную энергию - это создание органического вещества в результате фотосинтеза. В связывании и запасании солнечной энергии и заключается основная планетарная функция живого вещества на Земле. Наиболее важными биогенными веществами является углерод, азот, кислород, фосфор, сера.