Аксиоматический подход. Особенности теории интерпретации. Морфологический метод разработки продукта. метод «мозговой атаки» и оценочной шкалы

Приведём примеры аксиоматических теорий возникших разными путями.

Пример1. Теория групп - одна из теорий, возникших на втором пути. Было известно не мало объектов, обладающих многочисленными общими чертами. Среди них, в частности, множество F1-1(М) всех взаимнооднозначных отображений множества М на себя, рассматриваемое вместе с операцией суперпозиции отображений, множество Z всех целых чисел, рассматриваемое вместе с операцией сложения целых чисел, множество V2 всех векторов плоскости, рассматриваемое вместе с операцией сложения векторов по правилу треугольника или параллелограмма. Обозначив каждое из этих множеств через G, а каждую из операций через * (и называя её композицией элементов из G), обнаруживаем, что все три указанные объекта обладают следующими свойствами:

G0. Для любых а и в из G композиция а? в есть однозначно определённый элемент из G.

G1. Для любых а и в и с из G (а? в) ? с = а? (в? с).

G2. В G имеется такой элемент е, что для любого а из G а? е = е? а = а.

G3. Для любого а из G имеется такой а" из G, что а? а" = а"? а = е.

Например, элемент е, существование которого утверждается в свойстве G2, в случае F1-1(М) есть тождественное отображение М на М, в случае Z - целое число 0, в случае V2 - нуль вектор. В свойстве G3 элемент а" есть обратное преобразование f-1, противоположное число -m, противоположный вектор ВА для преобразования f, целого числа m и вектора АВ соответственно. Утверждения G0 - G3 и составляют систему аксиом теории групп. Из этих аксиом можно выводить разнообразные теоремы и тем самым строить аксиоматическую теорию групп. Докажем несколько теорем этой теории.

Теорема 1. В группе имеется точно один единичный элемент.

Доказательство: Ввиду G2 нужно доказать лишь единственность. Допустим, что в G имеется два единичных элемента -е1 и е2, т.е. на основании G2, для любого ае1?=а и а?е2= а. Тогда, в частности, е1* е2= е2 и е1* е2= е1. Следовательно, в силу G0 и свойств равенства е1= е2.

Теорема 2. Для каждого элемента группы имеется точно один обратный.

Доказательство: Ввиду G3 остаётся доказать лишь его единственность. Допустим, что в G для элемента а имеется два обратных а" и а"", т.е. таких элементов, что а"" ? а = е и а? а" = е. Тогда, в силу G1 (а"" ? а) ? а" = а"" и, следовательно, е? а" = а"" ? е. Отсюда следует, согласно G2, что а" = а"".

В мультипликативной терминологии обратный элемент для а обозначается через а-1, так что а-1? а = а? а-1= е, где единственный единичный элемент из G.

Теорема 3. Для любых элементов а, в, с, группы G из а * в = а * с следует в = с, и из в * а = с * а следует в = с.

Доказательство: Пусть а * в = а * с. Тогда а-1 * (а * в)=(а-1 * а) * в = е * в = в. С другой стороны, а-1 * (а * в)= а-1 * (а * с) = (а-1 * а) * с = е * с = с. следовательно, в = с. Пусть в * а = с * а. Тогда (в * а) * а-1= в * (а * а-1) = в * е = в. С другой стороны (с * а) * а-1= с * (а * а-1) = с * е = в. Значит в = с.

Пример 2. Теория конгруэнтности (равенства) отрезков. S множество всех отрезков и? отношение, называемое отношением конгруэнтности, так, что выражение х? у читается так: отрезок х конгруэнтен отрезку у. Выберем в качестве аксиом следующие утверждения:К1. Для всякого х из S х? х.

К2. Для любых элементов х, у, z из S, если х? z и у? z, то х? у.

Докажем теорему.

Теорема 1. Для любых элементов у и z из S, если у? z, то z ? у.

Доказательство: По аксиоме К2, подставив z вместо х, получим, что если z ? z и у? z, то z ? у. Поскольку член конъюнкции z ? z истинен на основании аксиомы К1, то из конъюнкции его можно убрать. Получим, что если у? z, то z ? у.

Пример 3. Аксиоматическая теория натуральных чисел построена итальянским математиком Дж. Пеано на рубеже XIX и XX веков. Её первоначальными понятиями являются: непустое множество N, бинарное отношение " и выделенный элемент 1. Аксиомы выбираются следующие:

(Р1) (? х) (х" ? 1).

(Р2) (? х, у) (х = у? х" = у")

(Р3) (? х, у) (х" = у" ? х = у)

(Р4) (Аксиома индукции) (1?М ^ (? х)(х?М? х"?М)) ?М=N.

Правилами вывода служат обычные логические правила Modus Ponens и правило подстановки.

Приведём доказательства двух теорем, непосредственно вытекающих из этих аксиом.

Теорема 1. (? х) (х" ? х)

Доказательство: Рассмотрим множество. М = {х? N: х" ? х }. Покажем, используя аксиому индукции (Р4), что М = N.

А) 1?М, так как 1"? 1 по аксиоме Р1.

Б) Пусть х?М, т.е. х" ? х. Тогда, по аксиоме Р3, (х") " ? х". Следовательно, по определению, х" ?М.

Условия аксиомы Р4 выполнены. Тогда, по аксиоме Р4, М = N. Это и означает, что (? х) (х" ? х).

Пример 4. Аксиоматическое построение канторовской («наивной») теории множеств на основе нескольких систем аксиом. Всего рассмотрим три системы аксиом.

Первоначальными понятиями теории Т, являются бинарные операции?, ? (пересечение и объединение), унарная операция " (дополнение), нульарные операции 0 и 1, фиксирующие два различных элемента - нулевой и единичный. Система аксиом?1 этой теории симметрична относительно операций?, ?, 0, 1.

(А1) х? у = у? х.

(А2) х? у = у? х.

(А3) х? (у? z) = (х? у) ? (х? z).

(А4) х? (у? z) = (х? у) ? (х? z).

(А5) х? 1 = х.

(А6) х? 0 = х.

(А7) х? х" = 0.

(А8) х? х" = 1.

Первоначальными понятиями второй теории Т2 являются бинарная операция? и унарная операция ". Система аксиом?2 этой теории, наоборот, ассиметрична, «смещена» в сторону операции?.

(В1) х? у = у? х.

(В2) (х? у) ? z = х? (у? z).

(В3) х? у" = z ? z" ? х? у = х.

(В4) х? у = х? х? у" = z ? z".

Наконец, в третий теории Т3 , в которой первоначальными понятиями являются бинарное отношение С, бинарные операции? и?, унарная операция " и нульарные операции 0 и 1, система аксиом?3 следующая:

(С2) х? у ^ у? z = х? z.

(С3) х? у? z ? х? z ^ у? z.

(С4) z ? х? у? z ? х ^ z ? у.

(С5) х? (у? z) ? (х? у) ? (х? z).

(С8) 1 ? х? х".

Аксиомой называют отправное, исходное положение какой-либо теории, находящееся в основе доказательств других положений (например, теорем) этой теории, в пределах которой оно принимается без доказательств. В обыденном сознании и языке аксиомой называют некую истину, настолько бесспорную, что она не требует доказательств.

Итак, аксиоматический метод – это один из способов дедуктивного построения научной теории, при котором выбирается некоторое множество принимаемых без доказательства положений, называемых «началами», «постулатами» или «аксиомами», а все остальные предложения теории получается как логическое следствие этих аксиом.

Аксиоматический метод в математике берет начало по меньшей мере от Евклида, хотя термин «аксиома» часто встречается и у Аристотеля: «… Ибо невозможны доказательства для всего: ведь доказательство должно даваться исходя из чего-то относительно чего-то и для обоснования чего-то. Таким образом, выходит, что все, что доказывается, должно принадлежать к одному роду, ибо все доказывающие науки одинаково пользуются аксиомами. <…> Аксиома обладает наивысшей степенью общности и суть начала всего. <…> Началами доказательства я называю общепринятые положения, на основании которых все строят свои доказательства. <…> О началах знания не нужно спрашивать «почему», а каждое из этих начал само по себе должно быть достоверным. Правдоподобно то, что кажется правильным всем или большинству людей или мудрым – всем или большинству из них или самым известным и славным». (См., например, Аристотель. Сочинения в четырех томах. Т. 2. Топика. М.: Мысль, 1978. С. 349).

Как видно из последнего фрагмента «Топики» Аристотеля, основанием принятия аксиомы служит некая «достоверность» и даже авторитет «известных и славных» людей. Но в настоящее время это не считается достаточным основанием. Современные точные науки, в том числе сама математика, не прибегают к очевидности как к аргументу истинности: аксиома просто вводится, принимается без доказательств.

Давид Гильберт (1862-1943), немецкий математик и физик, указывал, что термин аксиоматический употребляется иногда в более широком, а иногда и в более узком смысле слова. При самом широком понимании этого термина построение какой-либо теории мы называем «аксиоматическим». В этом отношении Д. Гильберт различает содержательную аксиоматику и формальную аксиоматику .

Первая «…вводит свои основные понятия со ссылкой на имеющийся у нас опыт, а свои основные положения либо считает очевидными фактами, в которых можно непосредственно убедиться, либо формулирует их как итог определенного опыта и тем самым выражает нашу уверенность в том, что нам удалось напасть на след законов природы, а заодно и наше намерение подкрепить эту уверенность успехом развиваемой теории. Формальная аксиоматика тоже нуждается в признании очевидности за вещами определенного рода – это необходимо как для осуществления дедукции, так и для установления непротиворечивости самой аксиоматики – однако с тем существенным различием, что этот род очевидности не основывается на каком-либо особом гносеологическом отношении к рассматриваемой конкретной области науки, а остается одним и тем же в случае любой аксиоматики: мы имеем здесь в виду столь элементарный способ познания, что он вообще является предварительным условием любого точного теоретического исследования. <…> Формальная аксиоматизация по необходимости нуждается в содержательной как в своем дополнении, поскольку именно эта последняя поначалу руководит нами в процессе выбора соответствующих формализмов, а затем, когда формальная теория уже имеется в нашем распоряжении, она подсказывает нам, как эта теория должна быть применена к рассматриваемой области действительности. С другой стороны, мы не можем ограничиться содержательной аксиоматикой по той простой причине, что в науке – если не всегда, то все же по преимуществу – мы имеем дело с такими теориями, которые отнюдь не полностью воспроизводят действительное положение вещей, а являются лишь упрощающей идеализацией этого положения, в чем и состоит их значение. Такого рода теория, конечно, не может быть обоснована путем ссылки на очевидность ее аксиом или опыт. Более того, ее обоснование и может быть осуществлено только в том смысле, что будет установлена непротиворечивость произведенной в ней идеализации, т.е. той экстраполяции, в результате которой введенные в этой теории понятия и ее основные положения переступают границы наглядно очевидного или данных опыта» (курсив мой, – Ю.Е.). (Гильберт Д., Бернайс П. Основания математики. М.: Наука, 1979. С. 23.)


Таким образом, современно понимаемый аксиоматический метод сводится к следующему: а) выбирается множество принимаемых без доказательств аксиом; б) входящие в них понятия явно не определяются в рамках данной теории; в) фиксируются правила определения и правила вывода данной теории, позволяющие логически выводить одни предположения из других; г) все остальные теоремы выводятся из «а» на основе «в». Таким методом в настоящее время построены различные разделы математики (геометрия, теория вероятностей, алгебра и др.), физики (механика, термодинамика); делаются попытки аксиоматизации химии и биологии . Гёделем доказана невозможность полной аксиоматизации достаточно развитых научных теорий (например, арифметики натуральных чисел), откуда следует невозможность полной формализации научного знания. При исследовании естественнонаучного знания аксиоматический метод выступает в форме гипотетико-дедуктивного метода . Употребление в обыденной речи понятия «аксиома» как некоей априорной очевидности уже не отражает сути этого понятия. Такое аристотелевское понимание данного термина в математике и естествознании в настоящее время преодолено. Обсуждение аксиоматики уместно сопроводить фрагментом классического сочинения Карла Раймунда Поппера:

«Теоретическую систему можно назвать аксиоматизированной, если сформулировано множество высказываний-аксиом, удовлетворяющее следующим четырем фундаментальным требованиям: (а) система аксиом должна быть непротиворечивой (то есть в ней не должно быть ни самопротиворечивых аксиом, ни противоречий между аксиомами). Это эквивалентно требованию, что не всякое произвольное высказывание выводимо в такой системе. (b) Аксиомы данной системы должны быть независимыми, то есть система не должна содержать аксиом, выводимых из остальных аксиом. (Иными словами, некоторое высказывание можно назвать аксиомой только в том случае, если оно не выводимо в оставшейся после его удаления части системы). Эти два условия относятся к самой системе аксиом. Что же касается отношения системы аксиом к основной части теории, то аксиомы должны быть: (c) достаточными для дедукции всех высказываний, принадлежащих к аксиоматизируемой теории, и d) необходимыми в том смысле, что система не должна содержать излишних предположений. <…> Я считаю допустимыми две различные интепретации любой системы аксиом. Аксиомы можно рассматривать либо (1) как конвенции , либо (2) как эмпирические, или научные гипотезы » (Поппер К. Р. Логика научного исследования. М.: Республика, 2005. С. 65).

В истории науки можно найти ряд примеров перехода на аксиоматический способ изложения теории. Более того, последовательное применение этого метода к логике доказательства теорем в геометрии позволило переосмыслить эту древнюю науку, открыв мир «неевклидовых геометрий» (А. И. Лобачевский, Я. Бойаи, К.Гаусс, Г. Ф. Б. Риман и др.). Этот метод оказался удобным и продуктивным, позволяющим выстраивать научную теорию буквально как монокристалл (так, в частности, излагается сейчас теоретическая механика и классическая термодинамика). Несколько позже, уже в 30-х годах XX столетия отечественный математик Андрей Николаевич Колмогоров (1903-1987) дал аксиоматическое обоснование теории вероятностей, которая, как уверенно полагают историки науки, до этого опиралась на эмпирические образы азартных игр («орлянка», кости, карты). В связи с этим есть смысл предложить вниманию читателя два фрагмента из текстов классиков науки и педагогики, которые умели писать, как говорил Бердяев, не только «о чем-то», но и «что-то».

Р. Курант и Г. Роббинс: «В системе Евклида имеется одна аксиома, относительно которой – на основе сопоставления с эмпирическими данными, с привлечением туго натянутых нитей или световых лучей – никак нельзя сказать, является ли она «истинной». Это знаменитый постулат о параллельных , утверждающий, что через данную точку, расположенную вне данной прямой, можно провести одну и только одну прямую, параллельную данной. Своеобразной особенностью этой аксиомы является то, что содержащееся в ней утверждение касается свойств прямой на всем ее протяжении , причем прямая предполагается неограниченно продолженной в обе стороны: сказать, что две прямые параллельны, – значит утверждать, что у них нельзя обнаружить общей точки, как бы далеко их ни продолжать, Вполне очевидно, что в пределах некоторой ограниченной части плоскости, как бы эта часть ни была обширна, напротив, можно провести через данную точку множество прямых, не пересекающихся с данной прямой. Так как максимально возможная длина линейки, нити, даже светового луча, прослеживаемого с помощью телескопа, непременно конечна и так как внутри круга конечного радиуса существует много прямых, проходящих через данную точку и в пределах круга не встречающихся с данной прямой, то отсюда следует, что постулат Евклида никогда не может быть проверен экспериментально. <…> Венгерский математик Бойаи и русский математик Лобачевский положили конец сомнениям, построивши во всех деталях геометрическую систему, в которой аксиома параллельности была отвергнута. Когда Бойаи послал свою работу «королю математики» Гауссу, от которого с нетерпением ждал поддержки, то получил в ответ уведомление, что самим Гауссом открытие было сделано раньше, но он воздержался в свое время от публикации результатов, опасаясь слишком шумных обсуждений.

Посмотрим, что же означает независимость аксиомы параллельности. Эту независимость следует понимать в том смысле, что возможно свободное от внутренних противоречий построение «геометрических» предложений о точках, прямых и т.д., исходя из системы аксиом, в которой аксиома параллельности заменена противоположной. Такое построение называется неевклидовой геометрией (курсив мой, – Ю.Е.). Нужно было интеллектуальное бесстрашие Гаусса, Бойаи и Лобачевского, чтобы осознать, что геометрия, основанная не на евклидовой системе аксиом, может быть абсолютно непротиворечивой (курсив мой, – Ю.Е.). <…> Мы умеем теперь строить простые «модели» такой геометрии, удовлетворяющие всем аксиомам Евклида, кроме аксиомы параллельности» (Курант Р., Роббинс Г. Что такое математика? М.: Просвещение, 1967. С. 250).

Различные варианты неевклидовых геометрий (например, геометрия Римана, а также геометрия в пространстве более чем трех измерений) позже нашли применение в построении теорий, относящихся к микромиру (релятивистская квантовая механика, физика элементарных частиц) и, напротив, к мегамиру (общая теория относительности).

Наконец, мнение отечественного математика Андрея Николаевича Колмогорова: «Теория вероятностей или математическая дисциплина может и должна быть аксиоматизирована совершенно в том же смысле, как геометрия или алгебра. Это означает, что, после того как даны названия изучаемым объектам и их основным отношениям, а также аксиомы, которым эти отношения должны подчиняться, все дальнейшее изложение должно основываться исключительно лишь на этих аксиомах, не опираясь на обычное конкретное значение этих объектов и их отношений (курсив мой, – Ю.Е.). <…> Всякая аксиоматическая (абстрактная) теория допускает, как известно, бесконечное число конкретных интерпретаций. Таким образом, и математическая теория вероятностей допускает наряду с теми интерпретациями, из которых она возникла, также много других. <…> Аксиоматизация теории вероятностей может быть проведена различными способами как в отношении выбора аксиом, так и выбора основных понятий и основных соотношений. Если преследовать цель возможной простоты как самой системы аксиом, так и построения из нее дальнейшей теории, то представляется наиболее целесообразным аксиоматизирование понятий случайного события и его вероятности. Существуют также другие системы аксиоматического построения теории вероятностей, а именно такие, в которых понятие вероятностей не относится к числу основных понятий, а само выражается через другие понятия [сноска: Ср., например, von Mises R. Wahrscheinlichkeitsrechnung, Leipzig u. Wien, Fr. Deuticke, 1931; Бернштейн С.Н. Теория вероятностей, 2-е изд., Москва, ГТТИ, 1934.]. При этом стремятся, однако, к другой цели, а именно, по возможности к наиболее тесному смыканию математической теории с эмпирическим возникновением понятия вероятности» (Колмогоров А.Н. Основные понятия теории вероятностей. М.: Наука, 1974. С. 9).

В математике АКСИОМАТИЧЕСКИЙ МЕТОД зародился в работах древнегреческих геометров. Блестящим, остававшимся единственным вплоть до ХIХ века образцом применения АКСИОМАТИЧЕСКОГО МЕТОДА была геометрическая система, известная под названием «НАЧАЛ» ЕВКЛИДА (около 300 лет до новой эры)

Среди аксиом Евклида была так называемая «аксиома о параллельных прямых» (она же - «пятый постулат Евклида»). Сегодня она формулируется так: «Через точку, не лежащую на данной прямой, можно провести ровно одну прямую, параллельную данной» (у Евклида была несколько иная формулировка, но эквивалентная этой, как показали более поздние ученые).

По своему характеру эта аксиома сильно отличалась от остальных его аксиом, была сложнее их. Многие математики в течение почти двух тысяч лет предпринимали попытки доказать этот постулат, исходя из остальных аксиом. И лишь в 19 веке было окончательно выяснено (и в чем состоял выдающийся вклад русского математика Николая Лобачевского), что данную аксиому нельзя вывести из остальных аксиом геометрии.

Наконец, на рубеже 19–20 веков немецкий математик Давид Гильберт, во-первых, записал евклидову геометрию в виде формальной аксиоматической теории (дописав, в том числе, некоторые недостающие аксиомы), а во-вторых, показал, что эта теория полна, то есть всякое утверждение можно в данной теории либо доказать, либо опровергнуть (то есть доказать его

отрицание). Это было одним из величайших вкладов в развитие аксиоматического метода и подтолкнуло к последовавшей формализации всей математики.

Аксиоматический метод - это способ построения и систематизации научного знания в форме так называемых аксиоматических теорий, при котором некоторые утверждения выбираются в качестве исходных положений (аксиом), а все остальные утверждения (теоремы) этой теории доказывают (или выводят), исходя лишь из аксиом с помощью чисто логических рассуждений.

И аксиомы, и теоремы - это высказывания (утверждения) на некотором языке о некоторых понятиях (или терминах). Поэтому, прежде чем формулировать аксиомы и доказывать теоремы, мы должны договориться, о каких именно понятиях пойдет речь. Понятия делятся на два вида: одни обозначают объекты, которыми занимается теория, другие

обозначают отношения между ними.

Одни понятия можно определять через другие. В какой-то момент необходимо остановиться и объявить некоторые понятия неопределяемыми (или исходными), и через них определять все остальные понятия (определяемые или производные), о которых говорится в данной теории.

Итак, чтобы пользоваться аксиоматическим методом построения теории, нужно:

(1) выбрать исходные понятия;


(2) сформулировать аксиомы («исходные» утверждения) об этих понятиях;

(3) выводить новые утверждения (теоремы) о них, пользуясь логикой и аксиомами.

В пунктах (2) и (3) можно вводить новые понятия (определяемые) через исходные и определенные ранее. Ввод новых понятий не добавляет новой информации, так как всегда можно заменить употребление этих понятий на их определение через исходные. Однако их использование позволяет сделать формулировки утверждений и доказательств короче и понятней. При этом надо следить, чтобы понятия вводились «последовательно» - каждое «следующее» новое понятие определялось через «ранее» определенные, то есть чтобы не возникал «порочный круг» (одно понятие определяется через второе, второе - через третье, и т.д., последнее - через первое).

Аналогично, в пункте (3) можно опираться не только на выбранные аксиомы, но и на доказанные «ранее» теоремы. Это позволяет делать доказательства более краткими, не доказывая одни и те же утверждения повторно.


Аксиоматический метод применяется не на этапе нового знания, а на этапе систематизации уже добытого знания. Аксиоматический метод можно образно представить как метод «шлифовки» уже добытого, но еще не оформленного, не систематизированного достаточно полно знания. Однако это только одна сторона дела. В результате «шлифовки», т.е. применения аксиоматического метода, теория приобретает логическую завершенность и такую форму, которая необходимо ведет к поиску нового зна-ния, выводит на конструирование новых математических теорий. Соответствующая функция аксиоматизации проявляется не сразу, так как она сама как метод формализации тоже развивается, т.е. аксиоматизация выступает в двух аспектах: и как результат формализации и как средство познания

Как полуформальная, так и формальная аксиоматизация в качестве предмета изучения использует интерпретацию. Метод интерпретации позволяет выработать способы истолкования, определения исходных понятий одной системы средствами другой, уже известной системы. Интерпретация как метод познания действительности применялся математикой давно. При интерпретации первоначальных объектов математики происходит соотнесение их с реальными объектами, благодаря чему знание о них становится более содержательным. Однако такая соотнесенность имеет опосредованный характер и ограниченное число интерпретаций, вплоть до единичной, что связано со спецификой объектов определенной конкретной области. При интерпретации более высоких уровней абстрактных объектов, образующих уже систему формализованную, возможна целая совокупность, множество интерпретаций, среди которых выделяются математические и естественнонаучные. Одни математические структуры интерпретируются другими математическими структурами.

Для формальной теории истинность теоремы означает, прежде всего, её доказуемость. Для содержательной теории утверждение истинно, если оно истинно в любой модели данной теории. Таким образом, и для любой формальной теории возникают a’ priori два понимания “истинности” формулы: доказуемость и тождественная истинность (истинность при любой интерпретации рассматриваемой теории).

Интерпретация формальной теории (или модель теории )определяется понятию интерпретации для множества формул исчисления предикатов. Не вдаваясь в формальности, ограничимся только намёком: модель теории (или интерпретация) – это некоторое множество вместе с зафиксированными на нём конкретными константами, предикатами и функциями для всех выделенных константных, предикатных и функциональных символов, участвующих в аксиомах теории. При этом требуется, чтобы все аксиомы теории в любой интерпретации этой теории представляли собой истинные в этой модели утверждения .


17. Метод интерпретации. Формальная аксиоматическая теория.

Интерпретация в математике, логике - совокупность значений (смыслов), придаваемых тем или иным способом элементам (выражениям, формулам, символам и т. д.) какой-либо естественнонаучной или абстрактно-дедуктивной теории. В тех же случаях, когда такому «осмыслению» подвергаются сами элементы этой теории, то говорят также об интерпретации символов, формул и т. д.

Конец XIX – начало XX вв.

Стремление к формальному построению аксиоматических теорий;

Поиск новых средств и методов обоснования математики в связи с парадоксами теории множеств;

Понимание того, что метод доказательства с помощью моделей и интерпретаций имеет лишь относительный характер (аксиоматика Пеано, непротиворечивость арифметики целых чисел)

Вариант формализованной аксиоматики осуществляется путем замены содержательных исходных положений (аксиом) и исходных объектов формулами и символами.

Знаки и формулы этого языка не несут никакого содержательного смысла.

Вывод: Математическая теория, непротиворечивость которой требовалось доказать, стала предметом другой математической теории, которую Гильберт назвал математикой или теорией доказательств.

К. Гёдель – математик и логик.

Выводы из теории Гёделя:

Любая формула, отношение которой невыводимо, является выполнимой;

Непротиворечивость формализованной системы ведет к ее неполноте.

Любая процедура доказательства истинных утверждений элементарной теории чисел заведомо неполна. Для любых систем доказательств существуют истинные утверждения, которые даже в таком определенном направлении математики остаются недоказуемыми.

Гёдель делает вывод об ограниченности аксиоматического метода.


18. История возникновения фрактальной геометрии. Значение фрактальной геометрии.

Понятие фрактал, появилось в конце 70-х годов 20 в.. Оно было введено в обращение в 1975 году французским математиком польского происхождения Бенуа Мандельбротом для обозначения нерегулярных, но самоподобных структур, которыми он занимался.

Важную роль в широком распространении идей фрактальной геометрии сыграла книга Б. Мандельброта «Фрактальная геометрия природы». В работах Б. Мандельброта использованы научные результаты, полученные многими учеными. Это объясняется тем, что самому факту появления фракталов более ста лет. Однако появление их в математической литературе было встречено с неприязнью. Общее мнение признало их патологией, представляющей интерес только для исследователей математических причуд, а не для подлинных ученых. Заслуга Б. Мандельброта в том, что ему удалось собрать разрозненные сведения, объединить их в единую систему, увидеть общее в многообразии, указать на важность своего открытия.

История развития идей фрактальной геометрии тесно связана с именами таких известных математиков, как К. Вейерштрасс, Г. Кантор, Дж. Пеано, Ф. Хаусдорф, А.С. Безикович, Х. Кох, В. Серпинский и др. Так К. Вейерштрасс впервые ввел в обращение непрерывную, но нигде не дифференцированную функцию. Ф. Хаусдорф в 1919 г. ввел понятие о дробной размерности множеств и привел примеры таких множеств. Среди них были канторовское множество, кривая Коха и другие математические объекты. Идеи Ф. Хаусдорфа впоследствии были существенно развиты А.С. Безиковичем.

Большой вклад в будущую фрактальную геометрию внесли работы французских математиков Г. Жулиа и П. Фату, которые в начале ХХ века занимались теорией рациональных отображений в комплексной плоскости. Практически полностью забытая, их деятельность получила неожиданное развитие в начале восьмидесятых годов, когда с помощью компьютеров математикам удалось получить прекрасные картины, показывающие примеры таких отображений.

В настоящее время язык фрактальной геометрии широко используется

в физике:

– при изучении поглощения или рассеяния излучения в пористых средах;

– для характеристики сильно развитой турбулентности;

– при моделировании свойств поверхности твердых тел;

– для описания диэлектрического пробоя и молнии;

– при анализе процессов усталостного разрушения материалов;

– при исследовании различных стадий роста вещества за счет диффузии;

в астрономии :

– при описании процессов кластеризации галактик во Вселенной;

в картографии:

– при изучении форм береговых линий и разветвленной сети речных русел;

в биологии:

– при анализе строения кровеносной системы или рассмотрении сложных поверхностей клеточных мембран.


Вопрос 19 Геометрические фракталы: триадная кривая Кох.

Геометрические фракталы самые наглядные. В двухмерном случае их получают с помощью некоторой ломаной (или поверхности в трехмерном случае), называемой генератором . За один шаг алгоритма каждый из отрезков, составляющих ломаную, заменяется на ломаную-генератор, в соответствующем масштабе. В результате бесконечного повторения этой процедуры, получается геометрический фрактал.

Рассмотрим один из таких фрактальных объектов - триадную кривую Коха . Построение кривой начинается с отрезка единичной длины (рис. 1.6) - это 0-е поколение кривой Кох. Далее каждое звено (в нулевом поколении один отрезок) заменяется на образующий элемент , обозначенный на рис.1 через n=1 . В результате такой замены получается следующее поколение кривой Кох. В 1-ом поколении - это кривая из четырех прямолинейных звеньев, каждое длиной по 1/3 . Для получения 3-го поколения проделываются те же действия - каждое звено заменяется на уменьшенный образующий элемент. Итак, для получения каждого последующего поколения, все звенья предыдущего поколения необходимо заменить уменьшенным образующим элементом. Кривая n -го поколения при любом конечном n называется предфракталом . На рис. 1.6 представлены пять поколений кривой. При n стремящемся к бесконечности кривая Кох становится фрактальным объектом.


20. Геометрические фракталы: салфетка Серпинского.

Рассмотрим самоподобную фигуру, придуманную польским математиком В.Серпинским (1882–1969).

Она получается из квадрата последовательным вырезанием серединных квадратов. Проследим построения нового квартала более подробно. Разделим данный квадрат на девять равных квадратов и квадрат, расположенный в середине, вырежем. Получим квадрат с пустотой (рис . 10а). Для оставшихся восьми квадратов вновь повторим указанную процедуру. Разделим каждый из них на девять равных квадратов и серединные квадраты удалим (рис . 10б). Повторяя похожие построения, будем получать все более “дырявую” фигуру (рис . 10в). То, что остается после всех вырезаний, и будет ковром Серпинского.

Рис . 10

Поскольку вырезаемые квадраты располагаются все более часто, то в результате на ковре (салфетке) Серпинского не будет ни одного, даже самого маленького, квадрата без «дырки».

Начиная не с квадрата, а с равностороннего треугольника, и вырезая центральные треугольники, получим еще одну самоподобную фигуру, аналогичную ковру Серпинского. Она носит название «салфетки Серпинского» (рис. 11).

Рис . 11


21. Фрактал Кантора.

Георг Кантор (1845-1918) явился одним из основателей теории множеств. Он также придумал один из старейших фракталов - множество Кантора (описано им в 1883) (называют иногда пылью). Фрактальные свойства пыли Кантора имеют огромное значение, особенно учитывая тот факт, что многие известные фракталы являются близкими родственниками этого фрактала.

Кантор с помощью простой рекурсивной (повторяющейся) процедуры превратил линию в набор несвязанных точек (так называемая Пыль Кантора). Он брал линию и удалял центральную треть и после этого повторял то же самое с оставшимися отрезками.

Способ построения этого множества следующий. Берётся отрезок прямой единичной длины. Затем он делится на три равные части, и вынимается средний отрезок. Это первый шаг итерационной процедуры. На втором шаге подобной процедуре деления на три равные части и последующего удаления середины подвергается каждый из двух оставшихся отрезков. Так продолжая до бесконечности, получим множество Кантора. Нетрудно заметить, что суммарная длина получившихся в пределе отрезков равна нулю, так кам мы исключили в результате длину, равную 1:

Проведём построение более формально на множестве. Берём отрезок единичной длины . Удаляем из него открытый интервал , получая . На следующем и всех остальных шагах вы выкидываем среднюю треть (не включая концы) всех отрезков текущего уровня. Т. о. на втором шаге мы имеем . Предельное множество , которое представляет собой пересечение множеств , , и представляет собой пыль Кантора.

Множество Кантора имеет мощность континуума. Для этого необходимо установить взаимно однозначное соответствие между точками из множества Кантора и точками отрезка . Будем представлять все точки отрезка в виде двоичной дроби, а точки пыли Кантора в виде троичной дроби. В случае, когда точка имеет два представления, мы будем всегда выбирать то, которое заканчивается всеми единицами в двоичном виде и всеми двойками в троичном. Заметим, что точка попадает в множество Кантора тогда и только тогда, когда в ее троичном представлении присутствуют только нули и двойки, поэтому искомое соответствие осуществляется заменой всех двоек в троичном представлении на единицы. Описанная процедура и определяет ваимно однозначное соответствие между множеством Кантора и отрезком .

Непосредственно с множеством Кантора связана чёртова лестница .


22. Фрактальная размерность. Примеры вычисления размерности фракталов.

Фрактал – множество с дробной размерностью.

Фрактал – множество, размерность Хайсдорфа-Безиковича которого строго больше топологической размерности.

Типы размерности:

1) Евклидова: минимальное число координат, необходимых для однозначного определения положения точки;

2) Тополог.: размерность любого множества на 1 больше размерности разреза, делящего его на две несвязнае части (тополог.размерность отрезка-1, топол.разм. квадрата-2, плоскости-2);

3) Размерность самоподобия . Размерность самоподобия – один из частных случаев фрактальной размерности.

Размерность Хаусдорфа - естественный способ определить размерность подмножества в метрическом пространстве.

Размерность Хаусдорфа согласуется с нашими обычными представлениями о размерности в тех случаях, когда эти обычные представления есть. Например, в трёхмерном евклидовом пространстве хаусдорфова размерность конечного множества равна нулю, размерность гладкой кривой - единице, размерность гладкой поверхности - двум и размерность множества ненулевого объёма - трём. Для более сложных (фрактальных) множеств размерность Хаусдорфа может не быть целым числом.


23. Алгебраические фракталы: метод построения алгебраических фракталов.

Свое название эти фракталы получили за то, что их строят на основе алгебраических формул.

Примеры: множество Мандельброта, множество Жюлиа, фрактал Ньютона.

Метод:

1. Выбирается формула (функция), в нее подставляется число и получается результат.

2. Полученный результат подставляется в эту же формулу и получается следующее число.

3. Повторение процедуры.

4. Получается набор чисел, являющихся точками фрактала.

Функция для разных точек может иметь разное поведение:

1. Стремится к бесконечности.

2. Стремится к 0.

3. Принимает несколько фиксированных значений.

4. Хаотичное поведение.


24 вопрос. Множество Мандельброта (один из самых известных фрактальных объектов) впервые было построено (визуально с применением ЭВМ) Бенуа Мандельбротом весной 1980 г. в исследовательском центре фирмы IBM им. Томаса Дж. Уотсона. И хотя исследования подобных объектов начались ещё в прошлом веке, именно открытие этого множества и совершенствование аппаратных средств машинной графики в решающей степени повлияли на развитие фрактальной геометрии и теории хаоса. Итак, что же такое множество Мандельброта.

Рассмотрим функцию комплексного переменного . Положим и рассмотрим последовательность , где для любого . Такая последовательность может быть ограниченной (т.е. может существовать такое r, что для любого ) либо "убегать в бесконечность" (т.е. для любого r > 0существует ). Множество Мандельброта можно определить как множество комплексных чисел c, для которых указанная последовательность является ограниченной. К сожалению, не известно аналитического выражения, которое позволяло бы по данному c определить, принадлежит ли оно множеству Мандельброта или нет. Поэтому для построения множества используют компьютерный эксперимент: просматривают с некоторым шагом множество точек на комплексной плоскости, для каждой точки проводят определённое число итераций (находят определённое число членов последовательности) и смотрят за её "поведением". (Рис. 4).

Доказано, что множество Мандельброта размещается в круге радиуса r=2 с центром в начале координат. Таким образом, если на некотором шаге модуль очередного члена последовательности превышает 2, можно сразу сделать вывод, что точка, соответствующая c, определяющему данную последовательность, не принадлежит множеству Мандельброта.

Уменьшая шаг, с которым просматриваются комплексные числа, и увеличивая количество итераций, мы можем получать сколь угодно подробные, но всегда лишь приближённые изображения множества.

Пусть в нашем распоряжении имеется N цветов, занумерованных для определённости от 0 до N-1. Будем считать, опять же для определённости, что черный цвет имеет номер 0. Если для данного c после N-1 итераций точка не вышла за круг радиуса 2, будем считать, что c принадлежит множеству Мандельброта, и покрасим эту точку c в чёрный цвет. Иначе, если на некотором шаге k (k Є ) очередная точка вышла за круг радиуса 2 (т.е. на k-ом шаге мы поняли, что она "убегает"), покрасим её в цвет k.

Красивые изображения получаются при удачном выборе палитры и окрестности множества (а именно вне множества мы и получим "цветные точки). (Рис. 5, 6).

Рис. 5 Рис. 6


25. Основные понятия теории узлов

Модель узла - замкнутая, несамопересекающаяся кривая в пространстве.

Узел – это замкнутая линия в пространстве, гладкая или ломаная, которая может быть как угодно закручена и переплетена.

Под развязыванием узла будем понимать выпрямление этого отрезка путем деформации его в трехмерном пространстве.

тривиальный узел (окружность)

Изображение узла называется диаграммой узла.

Зацеплением называется конечный набор замкнутых непересекающихся ориентированных ломаных в пространстве.

Два узла называются изотопными (эквивалентными), если от одного к другому можно перейти последовательно выполняя преобразования, которые называются элементарными изотопиями.

Два узла изотопны, если один узел можно перевязать в другой, не разрезая его и не допуская самопересечений.

Аксиоматический метод – способ построения научной теории, при котором в основу теории кладутся некоторые исходные положения, которые называют аксиомами теории, а все остальные положения теории вытекают как логические следствия аксиом.

Большинство направлений современной математики, теоретическая механика, ряд разделов физики построены на основе аксиоматического метода. В математике аксиоматический метод дает возможность создания законченных, логичнозавершиних научных теорий. Не меньшее значение имеет и то, что математическая теория, построенная аксиоматически, часто находит применение в других науках.

В математике аксиоматический метод зародился в работах древнегреческих геометров. Блестящим образцом его применения вплоть до XIX в. была геометрическая система, известная под названием «Начала» Евклида (ок. 300 до н.э.). Хотя в то время не стоял еще вопрос об описании логических средств, применяемых для получения содержательных последствий из аксиом, в системе Евклида уже достаточно четко прослеживается идея получения всего основного содержания геометрической теории чисто дедуктивным путем, с определенного, относительно небольшого, числа утверждений – аксиом, истинность которых представлялась наглядно очевидной.

Открытие в начале XIX в. неевклидовой геометрии Н. И. Лобачевским и Я. Бойяи стало толчком к дальнейшему развитию аксиоматического метода. Они установили, что, заменив привычный и, казалось бы, единственно «объективно истинный» V постулат Евклида о параллельных прямых его отрицанием, можно развивать чисто логическим путем геометрическую теорию, столь же стройную и богатую содержанием, как и геометрия Евклида. Этот факт заставил математиков XIX в. обратить особое внимание на дедуктивный способ построения математических теорий, что привело к возникновению связанной с самим понятием аксиоматического метода и формальной (аксиоматической) математической теории новой проблематики, на основе которой выросла так называемая теория доказательств как основной раздел современной математической логики.

Понимание необходимости обоснования математики и конкретные задачи в этой области зародились в более или менее отчетливой форме уже в XIX в. Уточнение основных понятий анализа и сведения сложных понятий к простейшему на точной и логически все более прочной основе, а также открытие неевклидовых геометрий стимулировали развитие аксиоматического метода и возникновения проблем общего математического характера, таких, как непротиворечивость, полнота и независимость той или системы аксиом.

Первые результаты в этой области принес метод интерпретаций, который может быть описан следующим образом. Пусть каждому выходному понятию и соотношению данной аксиоматической теории Т поставлен в соответствие определенный конкретный математический объект. Совокупность таких объектов называется полем интерпретации. Всякому утверждению U теории Т естественным образом ставится в соответствие определенное высказывание U * об элементах поля интерпретации, которое может быть истинным или ложным. Тогда говорят, что утверждения U теории Т соответствии истинное или ложное в данной интерпретации. Поле интерпретации и его свойства обычно сами являются объектом рассмотрения определенной математической теории T 1, которая, в частности, может быть тоже аксиоматической.

Метод интерпретаций позволяет устанавливать факт относительной непротиворечивости, то есть доказать утверждения типа: «если теория T 1 непротиворечива, то непротиворечивая и теория Т». Пусть теория Т проинтерпретированы в теории T 1 таким образом, что все аксиомы А и теории Т интерпретируются истинными утверждениями А и * теории Т 1. Тогда всякая теорема теории Т, то есть всякое утверждение А, логически выведено из аксиом А и в Т, интерпретируется в T 1 определенным утверждением А *, которое можно вывести в Т из интерпретаций А * и аксиом А и, и следовательно истинным. Последнее утверждение опирается на еще одно предположение, что делается неявно нами, определенного сходства логических средств, применяемых в теориях Т и Т 1. Практически это условие обычно выполняется. Пусть теперь теория Т противоречива, то есть некое утверждение А этой теории выведено в ней вместе со своим отрицанием. Тогда из вышесказанного следует, что утверждение А * и «не А *» будут одновременно истинными утверждениями теории Т 1, т.е. теория Т 1 противоречива. Этим методом была, например, доказано (Ф. Клейн, А. Пуанкаре) непротиворечивость неевклидовой геометрии Лобачевского в предположении, что непротиворечивая геометрия Евклида, а вопрос о непротиворечивость гильбертово аксиоматизациы евклидовой геометрии был возведен (Д. Гильберт) к проблеме непротиворечивости арифметики.

Метод интерпретаций позволяет также решать вопрос о независимости систем аксиом: для доказательства того, что аксиома А теории Т не виводима из других аксиом этой теории и, следовательно, существенно необходима для получения всего объема данной теории, достаточно построить такую интерпретацию теории Т, в которой аксиома А была бы ошибочна, а все остальные аксиомы данной теории истинны. Вышеупомянутое возведения проблемы непротиворечивости геометрии Лобачевского к проблеме непротиворечивости евклидовой геометрии, а этой последней – к вопросу о непротиворечивость арифметики имеет своим следствием утверждение, что V постулат Евклида не виводимий из других аксиом геометрии, если только непротиворечивой является арифметика натуральных чисел.

Слабая сторона метода интерпретаций заключается в том, что в вопросах непротиворечивости и независимости систем аксиом он дает возможность получать только результаты, носят относительный характер. Важным достижением этого метода стал тот факт, что с его помощью была обнаружена особая роль арифметики как такой математической теории, к вопросу о непротиворечивости которой сводится аналогичный вопрос для целого ряда других теорий.

Дальнейшее развитие – в известном смысле это была вершина – аксиоматический метод получил в работах Д. Гильберта и его школы. В рамках этого направления было произведено дальнейшее уточнение понятия аксиоматической теории, а само понятие формальной системы. В результате этого уточнения оказалось возможным представлять сами математические теории как точные математические объекты и строить общую теорию, или метатеорию, таких теорий. При этом привлекательной представлялась перспектива (и Д. Гильберт был в свое время ею увлечен) решить на этом пути все главные вопросы обоснования математики. Всякая формальная система строится как точно очерченное класс выражений формул, в котором определенным точным образом выделяется подкласс формул, называют теоремами данной формальной системы. При этом формулы формальной системы сами не несут в себе никакой смысловой смысла, их можно строить по произвольным знаков или элементарных символов, руководствуясь только соображениями технической удобства. На самом деле способ построения формул и понятия теоремы той или формальной системы выбираются с таким расчетом, чтобы весь этот формальный аппарат можно было применять для как можно более адекватного и полного выражения той или конкретной математической (или не математической) теории, точнее, как ее фактического содержания, так и ее дедуктивной структуры. Всякую конкретную математическую теорию Т можно перевести на язык пригодной формальной системы S таким образом, что каждое осмысленное (ложное или истинное) выражения теории Т выражается известной формулой системы S.

Естественно ожидать, что метод формализации позволит строить весь положительный смысл математических теорий на такой точной и, казалось бы, надежной основе, как понятие выведенной формулы (теоремы формальной системы), а принципиальные вопросы типа проблемы непротиворечивости математических теорий решать форме доказательств соответствующих утверждений формальных систем, которые формализуют эти теории. Чтобы получить доказательства утверждений о непротиворечивость, не зависящих от тех мощных средств, которые в классических математических теориях раз и является причиной осложнений их обоснования, Д. Гильберт предлагал исследовать формальные системы т.н. финитными методами (см. метаматематики).

Однако результаты К. Геделя начале 30-х г. XX в. привели к краху основных надежд, что связывались с этой программой. К. Гедель показал следующее.

1) Всякая естественная, непротиворечивая формализация S арифметики или любой другой математической теории, содержащей арифметику (напр., теории множеств), неполная и непополняемые в том смысле, что: а) в S содержатся (содержательно истинные неразрешимые формулы, есть такие формулы А, ни А, ни отрицания А не виводими в S (неполнота формализованной арифметикы), б) какой бы конечным множеством дополнительных аксиом (напр., неразрешимыми в S формулам) расширять систему S, в новой, усиленной таким образом формальной системе неизбежно появятся свои неразрешимые формулы (непоповнюванисть; см. также Геделя теорема о неполноте).

2) Если формализованная арифметика действительности непротиворечива, то, хотя утверждение о ее непротиворечивость может быть выражено ее собственным языком, доведение этого утверждения невозможно провести средствами, формализуются в ней самой.

Это означает, что уже для арифметики принципиально невозможно исчерпать весь объем ее содержательно истинных суждений классом виводимих формул какой бы формальной системой и что нет никакой надежды получить какое-либо финитных доведение непротиворечивости арифметики, потому что, очевидно, всякое разумное уточнение понятия финитного доведение оказывается формализуемим в формальной арифметике.

Все это ставит определенные границы можливстям А. м. в том его виде, который он приобрел в рамках гильбертовського формализма. Однако и в этих границах он сыграл и продолжает играть важную роль в основании математики. Так, например, уже после описанных результатов К. Геделя им же в 1938-40 гг, а затем П. Коэном в 1963 г. на основе аксиоматического подхода с применением метода интерпретаций были получены фундаментальные результаты о совместимости (т.е. относительную непротиворечивость) и независимость аксиомы выбора и континуум-гипотезы в теории множеств. Что касается такого основного вопроса основ математики, как проблема непротиворечивости, и после результатов К. Геделя стало ясно, что для его решения, очевидно, не обойтись без других, отличных от финитистських, средств и идей. Здесь оказались возможными различные подходы, учитывая существование различных взглядов на допустимость тех или иных логических средств.

Из результатов о непротиворечивость формальных систем следует указать на доведение непротиворечивости формализованной арифметики, опирающегося на бесконечную индукцию к определенному счетно трансфинитной числа.

По П. С. Новиковым.

Аксиоматический метод

Наименование параметра Значение
Тема статьи: Аксиоматический метод
Рубрика (тематическая категория) История

Аксиомой называют отправное, исходное положение какой-либо теории, находящееся в базе доказательств других положений (к примеру, теорем) этой теории, в пределах которой оно принимается без доказательств. В обыденном сознании и языке аксиомой называют некую истину, настолько бесспорную, что она не требует доказательств.

Итак, аксиоматический метод - ϶ᴛᴏ один из способов дедуктивного построения научной теории, при котором выбирается неĸᴏᴛᴏᴩᴏᴇ множество принимаемых без доказательства положений, называемых ʼʼначаламиʼʼ, ʼʼпостулатамиʼʼ или ʼʼаксиомамиʼʼ, а всœе остальные предложения теории получается как логическое следствие этих аксиом.

Аксиоматический метод в математике берет начало по меньшей мере от Евклида, хотя термин ʼʼаксиомаʼʼ часто встречается и у Аристотеля: ʼʼ… Ибо невозможны доказательства для всœего: ведь доказательство должно даваться исходя из чего-то относительно чего-то и для обоснования чего-то. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, выходит, что всœе, что доказывается, должно принадлежать к одному роду, ибо всœе доказывающие науки одинаково пользуются аксиомами. <…> Аксиома обладает наивысшей степенью общности и суть начала всœего. <…> Началами доказательства я называю общепринятые положения, на основании которых всœе строят свои доказательства. <…> О началах знания не нужно спрашивать ʼʼпочемуʼʼ, а каждое из этих начал само по себе должно быть достоверным. Правдоподобно то, что кажется правильным всœем или большинству людей или мудрым – всœем или большинству из них или самым известным и славнымʼʼ. (См., к примеру, Аристотель. Сочинœения в четырех томах. Т. 2. Топика. М.: Мысль, 1978. С. 349).

Как видно из последнего фрагмента ʼʼТопикиʼʼ Аристотеля, основанием принятия аксиомы служит некая ʼʼдостоверностьʼʼ и даже авторитет ʼʼизвестных и славныхʼʼ людей. Но в настоящее время это не считается достаточным основанием. Современные точные науки, в т.ч. сама математика, не прибегают к очевидности как к аргументу истинности: аксиома просто вводится, принимается без доказательств.

Давид Гильберт (1862-1943), немецкий математик и физик, указывал, что термин аксиоматический употребляется иногда в более широком, а иногда и в более узком смысле слова. При самом широком понимании этого термина построение какой-либо теории мы называем ʼʼаксиоматическимʼʼ. В этом отношении Д. Гильберт различает содержательную аксиоматику и формальную аксиоматику .

Первая ʼʼ…вводит свои основные понятия со ссылкой на имеющийся у нас опыт, а свои основные положения либо считает очевидными фактами, в которых можно непосредственно убедиться, либо формулирует их как итог определœенного опыта и тем самым выражает нашу уверенность в том, что нам удалось напасть на след законов природы, а заодно и наше намерение подкрепить эту уверенность успехом развиваемой теории. Формальная аксиоматика тоже нуждается в признании очевидности за вещами определœенного рода - ϶ᴛᴏ крайне важно как для осуществления дедукции, так и для установления непротиворечивости самой аксиоматики – однако с тем существенным различием, что данный род очевидности не основывается на каком-либо особом гносœеологическом отношении к рассматриваемой конкретной области науки, а остается одним и тем же в случае любой аксиоматики: мы имеем здесь в виду столь элементарный способ познания, что он вообще является предварительным условием любого точного теоретического исследования. <…> Формальная аксиоматизация по крайне важно сти нуждается в содержательной как в своем дополнении, поскольку именно эта последняя поначалу руководит нами в процессе выбора соответствующих формализмов, а затем, когда формальная теория уже имеется в нашем распоряжении, она подсказывает нам, как эта теория должна быть применена к рассматриваемой области действительности. С другой стороны, мы не можем ограничиться содержательной аксиоматикой по той простой причинœе, что в науке – если не всœегда, то всœе же по преимуществу – мы имеем дело с такими теориями, которые отнюдь не полностью воспроизводят действительное положение вещей, а являются лишь упрощающей идеализацией этого положения, в чем и состоит их значение. Такого рода теория, конечно, не должна быть обоснована путем ссылки на очевидность ее аксиом или опыт. Более того, ее обоснование и должна быть осуществлено только в том смысле, что будет установлена непротиворечивость произведенной в ней идеализации, ᴛ.ᴇ. той экстраполяции, в результате которой введенные в этой теории понятия и ее основные положения переступают границы наглядно очевидного или данных опытаʼʼ (курсив мой, – Ю.Е.). (Гильберт Д., Бернайс П. Основания математики. М.: Наука, 1979. С. 23.)

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, современно понимаемый аксиоматический метод сводится к следующему: а) выбирается множество принимаемых без доказательств аксиом; б) входящие в них понятия явно не определяются в рамках данной теории; в) фиксируются правила определœения и правила вывода данной теории, позволяющие логически выводить одни предположения из других; г) всœе остальные теоремы выводятся из ʼʼаʼʼ на базе ʼʼвʼʼ. Таким методом в настоящее время построены различные разделы математики (геометрия, теория вероятностей, алгебра и др.), физики (механика, термодинамика); делаются попытки аксиоматизации химии и биологии . Гёделœем доказана невозможность полной аксиоматизации достаточно развитых научных теорий (к примеру, арифметики натуральных чисел), откуда следует невозможность полной формализации научного знания. При исследовании естественнонаучного знания аксиоматический метод выступает в форме гипотетико-дедуктивного метода . Употребление в обыденной речи понятия ʼʼаксиомаʼʼ как некоей априорной очевидности уже не отражает сути этого понятия. Такое аристотелœевское понимание данного термина в математике и естествознании в настоящее время преодолено. Обсуждение аксиоматики уместно сопроводить фрагментом классического сочинœения Карла Раймунда Поппера:

ʼʼТеоретическую систему можно назвать аксиоматизированной, в случае если сформулировано множество высказываний-аксиом, удовлетворяющее следующим четырем фундаментальным требованиям: (а) система аксиом должна быть непротиворечивой (то есть в ней не должно быть ни самопротиворечивых аксиом, ни противоречий между аксиомами). Это эквивалентно требованию, что не всякое произвольное высказывание выводимо в такой системе. (b) Аксиомы данной системы должны быть независимыми, то есть система не должна содержать аксиом, выводимых из остальных аксиом. (Иными словами, неĸᴏᴛᴏᴩᴏᴇ высказывание можно назвать аксиомой только в том случае, в случае если оно не выводимо в оставшейся после его удаления части системы). Эти два условия относятся к самой системе аксиом. Что же касается отношения системы аксиом к основной части теории, то аксиомы должны быть: (c) достаточными для дедукции всœех высказываний, принадлежащих к аксиоматизируемой теории, и d) необходимыми в том смысле, что система не должна содержать излишних предположений. <…> Я считаю допустимыми две различные интепретации любой системы аксиом. Аксиомы можно рассматривать либо (1) как конвенции , либо (2) как эмпирические, или научные гипотезы ʼʼ (Поппер К. Р. Логика научного исследования. М.: Республика, 2005. С. 65).

В истории науки можно найти ряд примеров перехода на аксиоматический способ изложения теории. Более того, последовательное применение этого метода к логике доказательства теорем в геометрии позволило переосмыслить эту древнюю науку, открыв мир ʼʼнеевклидовых геометрийʼʼ (А. И. Лобачевский, Я. Бойаи, К.Гаусс, Г. Ф. Б. Риман и др.). Этот метод оказался удобным и продуктивным, позволяющим выстраивать научную теорию буквально как монокристалл (так, в частности, излагается сейчас теоретическая механика и классическая термодинамика). Несколько позже, уже в 30-х годах XX столетия отечественный математик Андрей Николаевич Колмогоров (1903-1987) дал аксиоматическое обоснование теории вероятностей, которая, как уверенно полагают историки науки, до этого опиралась на эмпирические образы азартных игр (ʼʼорлянкаʼʼ, кости, карты). В связи с этим есть смысл предложить вниманию читателя два фрагмента из текстов классиков науки и педагогики, которые умели писать, как говорил Бердяев, не только ʼʼо чем-тоʼʼ, но и ʼʼчто-тоʼʼ.

Р. Курант и Г. Роббинс: ʼʼВ системе Евклида имеется одна аксиома, относительно которой – на базе сопоставления с эмпирическими данными, с привлечением туго натянутых нитей или световых лучей – никак нельзя сказать, является ли она ʼʼистиннойʼʼ. Это знаменитый постулат о параллельных , утверждающий, что через данную точку, расположенную вне данной прямой, можно провести одну и только одну прямую, параллельную данной. Своеобразной особенностью этой аксиомы является то, что содержащееся в ней утверждение касается свойств прямой на всœем ее протяжении , причем прямая предполагается неограниченно продолженной в обе стороны: сказать, что две прямые параллельны, – значит утверждать, что у них нельзя обнаружить общей точки, как бы далеко их ни продолжать, Вполне очевидно, что в пределах некоторой ограниченной части плоскости, как бы эта часть ни была обширна, напротив, можно провести через данную точку множество прямых, не пересекающихся с данной прямой. Так как максимально возможная длина линœейки, нити, даже светового луча, прослеживаемого с помощью телœескопа, непременно конечна и так как внутри круга конечного радиуса существует много прямых, проходящих через данную точку и в пределах круга не встречающихся с данной прямой, то отсюда следует, что постулат Евклида никогда не должна быть проверен экспериментально. <…> Венгерский математик Бойаи и русский математик Лобачевский положили конец сомнениям, построивши во всœех деталях геометрическую систему, в которой аксиома параллельности была отвергнута. Когда Бойаи послал свою работу ʼʼкоролю математикиʼʼ Гауссу, от которого с нетерпением ждал поддержки, то получил в ответ уведомление, что самим Гауссом открытие было сделано раньше, но он воздержался в свое время от публикации результатов, опасаясь чересчур шумных обсуждений.

Посмотрим, что же означает независимость аксиомы параллельности. Эту независимость следует понимать в том смысле, что возможно свободное от внутренних противоречий построение ʼʼгеометрическихʼʼ предложений о точках, прямых и т.д., исходя из системы аксиом, в которой аксиома параллельности заменена противоположной. Такое построение принято называть неевклидовой геометрией (курсив мой, – Ю.Е.). Нужно было интеллектуальное бесстрашие Гаусса, Бойаи и Лобачевского, чтобы осознать, что геометрия, основанная не на евклидовой системе аксиом, должна быть абсолютно непротиворечивой (курсив мой, – Ю.Е.). <…> Мы умеем теперь строить простые ʼʼмоделиʼʼ такой геометрии, удовлетворяющие всœем аксиомам Евклида, кроме аксиомы параллельностиʼʼ (Курант Р., Роббинс Г. Что такое математика? М.: Просвещение, 1967. С. 250).

Различные варианты неевклидовых геометрий (к примеру, геометрия Римана, а также геометрия в пространстве более чем трех измерений) позже нашли применение в построении теорий, относящихся к микромиру (релятивистская квантовая механика, физика элементарных частиц) и, напротив, к мегамиру (общая теория относительности).

Наконец, мнение отечественного математика Андрея Николаевича Колмогорова: ʼʼТеория вероятностей или математическая дисциплина может и должна быть аксиоматизирована совершенно в том же смысле, как геометрия или алгебра. Это означает, что, после того как даны названия изучаемым объектам и их основным отношениям, а также аксиомы, которым эти отношения должны подчиняться, всœе дальнейшее изложение должно основываться исключительно лишь на этих аксиомах, не опираясь на обычное конкретное значение этих объектов и их отношений (курсив мой, – Ю.Е.). <…> Всякая аксиоматическая (абстрактная) теория допускает, как известно, бесконечное число конкретных интерпретаций. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, и математическая теория вероятностей допускает наряду с теми интерпретациями, из которых она возникла, также много других. <…> Аксиоматизация теории вероятностей должна быть проведена различными способами как в отношении выбора аксиом, так и выбора базовых понятий и базовых соотношений. В случае если преследовать цель возможной простоты как самой системы аксиом, так и построения из нее дальнейшей теории, то представляется наиболее целœесообразным аксиоматизирование понятий случайного события и его вероятности. Существуют также другие системы аксиоматического построения теории вероятностей, а именно такие, в которых понятие вероятностей не относится к числу базовых понятий, а само выражается через другие понятия [сноска: Ср., к примеру, von Mises R. Wahrscheinlichkeitsrechnung, Leipzig u. Wien, Fr. Deuticke, 1931; Бернштейн С.Н. Теория вероятностей, 2-е изд., Москва, ГТТИ, 1934.]. При этом стремятся, однако, к другой цели, а именно, по возможности к наиболее тесному смыканию математической теории с эмпирическим возникновением понятия вероятностиʼʼ (Колмогоров А.Н. Основные понятия теории вероятностей. М.: Наука, 1974. С. 9).

Аксиоматический метод - понятие и виды. Классификация и особенности категории "Аксиоматический метод" 2017, 2018.